Deep functional multiple index models with an application to SER

Matthieu Saumard, Abir El Haj, Thibault Napoleon
{"title":"Deep functional multiple index models with an application to SER","authors":"Matthieu Saumard, Abir El Haj, Thibault Napoleon","doi":"arxiv-2403.17562","DOIUrl":null,"url":null,"abstract":"Speech Emotion Recognition (SER) plays a crucial role in advancing\nhuman-computer interaction and speech processing capabilities. We introduce a\nnovel deep-learning architecture designed specifically for the functional data\nmodel known as the multiple-index functional model. Our key innovation lies in\nintegrating adaptive basis layers and an automated data transformation search\nwithin the deep learning framework. Simulations for this new model show good\nperformances. This allows us to extract features tailored for chunk-level SER,\nbased on Mel Frequency Cepstral Coefficients (MFCCs). We demonstrate the\neffectiveness of our approach on the benchmark IEMOCAP database, achieving good\nperformance compared to existing methods.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Speech Emotion Recognition (SER) plays a crucial role in advancing human-computer interaction and speech processing capabilities. We introduce a novel deep-learning architecture designed specifically for the functional data model known as the multiple-index functional model. Our key innovation lies in integrating adaptive basis layers and an automated data transformation search within the deep learning framework. Simulations for this new model show good performances. This allows us to extract features tailored for chunk-level SER, based on Mel Frequency Cepstral Coefficients (MFCCs). We demonstrate the effectiveness of our approach on the benchmark IEMOCAP database, achieving good performance compared to existing methods.
深度功能多重指数模型在 SER 中的应用
语音情感识别(SER)在提高人机交互和语音处理能力方面发挥着至关重要的作用。我们引入了一种专为函数数据模型设计的高级深度学习架构,即多索引函数模型。我们的关键创新在于在深度学习框架中集成了自适应基础层和自动数据转换搜索。对这一新模型的模拟显示了良好的性能。这使我们能够基于梅尔频率倒频谱系数(MFCC),提取为块级 SER 量身定制的特征。我们在基准 IEMOCAP 数据库上演示了我们的方法的有效性,与现有方法相比取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信