Zhiwei, Wang, Siyang, Lu, Xiang, Wei, Run, Su, Yingjun, Qi, Wei, Lu
{"title":"Learn More Manchu Words with A New Visual-Language Framework","authors":"Zhiwei, Wang, Siyang, Lu, Xiang, Wei, Run, Su, Yingjun, Qi, Wei, Lu","doi":"10.1145/3652992","DOIUrl":null,"url":null,"abstract":"<p>Manchu language, a minority language of China, is of significant historical and research value. An increasing number of Manchu documents are digitized into image format for better preservation and study. Recently, many researchers focused on identifying Manchu words in digitized documents. In previous approaches, a variety of Manchu words are recognized based on visual cues. However, we notice that visual-based approaches have some obvious drawbacks. On one hand, it is difficult to distinguish between similar and distorted letters. On the other hand, portions of letters obscured by breakage and stains are hard to identify. To cope with these two challenges, we propose a visual-language framework, namely the Visual-Language framework for Manchu word Recognition (VLMR), which fuses visual and semantic information to accurately recognize Manchu words. Whenever visual information is not available, the language model can automatically associate the semantics of words. The performance of our method is further enhanced by introducing a self-knowledge distillation network. In addition, we created a new handwritten Manchu word dataset named (HMW), which contains 6,721 handwritten Manchu words. The novel approach is evaluated on WMW and HMW. The experiments show that our proposed method achieves state-of-the-art performance on both datasets.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"2010 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652992","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Manchu language, a minority language of China, is of significant historical and research value. An increasing number of Manchu documents are digitized into image format for better preservation and study. Recently, many researchers focused on identifying Manchu words in digitized documents. In previous approaches, a variety of Manchu words are recognized based on visual cues. However, we notice that visual-based approaches have some obvious drawbacks. On one hand, it is difficult to distinguish between similar and distorted letters. On the other hand, portions of letters obscured by breakage and stains are hard to identify. To cope with these two challenges, we propose a visual-language framework, namely the Visual-Language framework for Manchu word Recognition (VLMR), which fuses visual and semantic information to accurately recognize Manchu words. Whenever visual information is not available, the language model can automatically associate the semantics of words. The performance of our method is further enhanced by introducing a self-knowledge distillation network. In addition, we created a new handwritten Manchu word dataset named (HMW), which contains 6,721 handwritten Manchu words. The novel approach is evaluated on WMW and HMW. The experiments show that our proposed method achieves state-of-the-art performance on both datasets.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.