{"title":"Morphisms between Grassmannians, II","authors":"Gianluca Occhetta, Eugenia Tondelli","doi":"10.1007/s00013-024-01986-y","DOIUrl":null,"url":null,"abstract":"<div><p>Denote by <span>\\({\\mathbb {G}}(k,n)\\)</span> the Grassmannian of linear subspaces of dimension <i>k</i> in <span>\\({\\mathbb {P}}^n\\)</span>. We show that if <span>\\(\\varphi :{\\mathbb {G}}(l,n) \\rightarrow {\\mathbb {G}}(k,n)\\)</span> is a nonconstant morphism and <span>\\(l \\not =0,n-1\\)</span>, then <span>\\(l=k\\)</span> or <span>\\(l=n-k-1\\)</span> and <span>\\(\\varphi \\)</span> is an isomorphism.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01986-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01986-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Denote by \({\mathbb {G}}(k,n)\) the Grassmannian of linear subspaces of dimension k in \({\mathbb {P}}^n\). We show that if \(\varphi :{\mathbb {G}}(l,n) \rightarrow {\mathbb {G}}(k,n)\) is a nonconstant morphism and \(l \not =0,n-1\), then \(l=k\) or \(l=n-k-1\) and \(\varphi \) is an isomorphism.
Abstract Denote by \({\mathbb {G}}(k,n)\) the Grassmannian of linear subspaces of dimension k in \({\mathbb {P}}^n\) .我们证明如果 \(\varphi :{\mathbb {G}}(l,n) \rightarrow {\mathbb {G}}(k,n)\) 是一个非恒定变形并且 \(l \not =0,n-1\) ,那么 \(l=k\) 或者 \(l=n-k-1\) 和 \(\varphi\) 是一个同构。
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.