{"title":"Connection probabilities of multiple FK-Ising interfaces","authors":"Yu Feng, Eveliina Peltola, Hao Wu","doi":"10.1007/s00440-024-01269-1","DOIUrl":null,"url":null,"abstract":"<p>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight <span>\\({q \\in [1,4)}\\)</span>. Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of <i>q</i> than the FK-Ising model (<span>\\(q=2\\)</span>). Given the convergence of interfaces, the conjectural formulas for other values of <i>q</i> could be verified similarly with relatively minor technical work. The limit interfaces are variants of <span>\\(\\text {SLE}_\\kappa \\)</span> curves (with <span>\\(\\kappa = 16/3\\)</span> for <span>\\(q=2\\)</span>). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all <span>\\(q \\in [1,4)\\)</span>, thus providing further evidence of the expected CFT description of these models.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01269-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight \({q \in [1,4)}\). Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model (\(q=2\)). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of \(\text {SLE}_\kappa \) curves (with \(\kappa = 16/3\) for \(q=2\)). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all \(q \in [1,4)\), thus providing further evidence of the expected CFT description of these models.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.