An analytic method for quadratic polarons in non-parabolic bands

Serghei N. Klimin, Jacques Tempere, Matthew Houtput, Stefano Ragni, Thomas Hahn, Cesare Franchini, Andrey S. Mishchenko
{"title":"An analytic method for quadratic polarons in non-parabolic bands","authors":"Serghei N. Klimin, Jacques Tempere, Matthew Houtput, Stefano Ragni, Thomas Hahn, Cesare Franchini, Andrey S. Mishchenko","doi":"arxiv-2403.18019","DOIUrl":null,"url":null,"abstract":"Including the effect of lattice anharmonicity on electron-phonon interactions\nhas recently garnered attention due to its role as a necessary and significant\ncomponent in explaining various phenomena, including superconductivity, optical\nresponse, and the temperature dependence of mobility. This study focuses on\nanalytically treating the effects of anharmonic electron-phonon coupling on the\npolaron self-energy, combined with numerical Diagrammatic Monte Carlo data.\nSpecifically, we incorporate a quadratic interaction into the method of\nsqueezed phonon states, which has proven effective for analytically calculating\nthe polaron parameters. Additionally, we extend this method to non-parabolic\nfinite-width conduction bands while maintaining the periodic translation\nsymmetry of the system. Our results are compared with those obtained from\nDiagrammatic Monte Carlo, partially reported in a recent study [Phys. Rev. B\n107, L121109(2023)], covering a wide range of coupling strengths for the\nnonlinear interaction. Remarkably, our analytic method predicts the same\nfeatures as the Diagrammatic Monte Carlo simulation.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Including the effect of lattice anharmonicity on electron-phonon interactions has recently garnered attention due to its role as a necessary and significant component in explaining various phenomena, including superconductivity, optical response, and the temperature dependence of mobility. This study focuses on analytically treating the effects of anharmonic electron-phonon coupling on the polaron self-energy, combined with numerical Diagrammatic Monte Carlo data. Specifically, we incorporate a quadratic interaction into the method of squeezed phonon states, which has proven effective for analytically calculating the polaron parameters. Additionally, we extend this method to non-parabolic finite-width conduction bands while maintaining the periodic translation symmetry of the system. Our results are compared with those obtained from Diagrammatic Monte Carlo, partially reported in a recent study [Phys. Rev. B 107, L121109(2023)], covering a wide range of coupling strengths for the nonlinear interaction. Remarkably, our analytic method predicts the same features as the Diagrammatic Monte Carlo simulation.
非抛物面带中二次极子的解析方法
晶格非谐波对电子-声子相互作用的影响最近引起了人们的关注,因为它是解释各种现象(包括超导性、光学响应和迁移率的温度依赖性)的一个必要和重要的组成部分。这项研究的重点是分析处理非谐波电子-声子耦合对极子自能的影响,并结合数值图解蒙特卡洛数据。具体来说,我们将二次相互作用纳入挤压声子态方法,该方法已被证明对分析计算极子参数非常有效。此外,我们在保持系统周期性平移对称性的同时,将这种方法扩展到了非抛物面无限宽导带。我们的结果与最近的一项研究[Phys. Rev. B107, L121109(2023)]中部分报道的从模拟蒙特卡洛(Diagrammatic Monte Carlo)得到的结果进行了比较,后者涵盖了当时非线性相互作用的宽耦合强度范围。值得注意的是,我们的分析方法预测了与图解蒙特卡罗模拟相同的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信