Towards the Optimality of the Ball for the Rayleigh Conjecture Concerning the Clamped Plate

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Roméo Leylekian
{"title":"Towards the Optimality of the Ball for the Rayleigh Conjecture Concerning the Clamped Plate","authors":"Roméo Leylekian","doi":"10.1007/s00205-024-01972-2","DOIUrl":null,"url":null,"abstract":"<div><p>The first eigenvalue of the Dirichlet bilaplacian shall be interpreted as the principal frequency of a vibrating plate with clamped boundary. In 1894, Rayleigh conjectured that, upon prescribing the area, the vibrating clamped plate with least principal frequency is circular. In 1995, Nadirashvili proved the Rayleigh Conjecture. Subsequently, Ashbaugh and Benguria proved the analogue of the conjecture in dimension 3. Since then, the conjecture has remained open in dimension <span>\\(d&gt;3\\)</span>. In this document, we contribute in answering the conjecture in high dimension under a particular assumption regarding the critical values of the optimal eigenfunction. More precisely, we prove that if the optimal eigenfunction has no critical value except its minimum and maximum, then the conjecture holds. This is performed thanks to an improvement of Talenti’s comparison principle, made possible after a fine study of the geometry of the eigenfunction’s nodal domains.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01972-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The first eigenvalue of the Dirichlet bilaplacian shall be interpreted as the principal frequency of a vibrating plate with clamped boundary. In 1894, Rayleigh conjectured that, upon prescribing the area, the vibrating clamped plate with least principal frequency is circular. In 1995, Nadirashvili proved the Rayleigh Conjecture. Subsequently, Ashbaugh and Benguria proved the analogue of the conjecture in dimension 3. Since then, the conjecture has remained open in dimension \(d>3\). In this document, we contribute in answering the conjecture in high dimension under a particular assumption regarding the critical values of the optimal eigenfunction. More precisely, we prove that if the optimal eigenfunction has no critical value except its minimum and maximum, then the conjecture holds. This is performed thanks to an improvement of Talenti’s comparison principle, made possible after a fine study of the geometry of the eigenfunction’s nodal domains.

Abstract Image

实现与夹板有关的雷利猜想球的最优性
摘要 Dirichlet bilaplacian 的第一个特征值应解释为夹紧边界振动板的主频。1894 年,瑞利(Rayleigh)猜想,在规定面积的情况下,主频最小的夹紧振动板是圆形的。1995 年,Nadirashvili 证明了雷利猜想。随后,Ashbaugh 和 Benguria 在维度 3 中证明了该猜想的相似性。从那时起,该猜想在维度(d>3\)上一直悬而未决。在本文中,我们将在关于最优特征函数临界值的特定假设下,回答高维度中的猜想。更准确地说,我们证明了如果最优特征函数除了最小值和最大值之外没有临界值,那么猜想成立。这要归功于对塔伦蒂比较原理的改进,是在对特征函数节点域的几何形状进行精细研究之后才得以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信