A note on complex plane curve singularities up to diffeomorphism and their rigidity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Fernández-Hernández, R. Giménez Conejero
{"title":"A note on complex plane curve singularities up to diffeomorphism and their rigidity","authors":"A. Fernández-Hernández, R. Giménez Conejero","doi":"10.1007/s40687-024-00439-w","DOIUrl":null,"url":null,"abstract":"<p>We prove that if two germs of plane curves (<i>C</i>, 0) and <span>\\((C',0)\\)</span> with at least one singular branch are equivalent by a (real) smooth diffeomorphism, then <i>C</i> is complex isomorphic to <span>\\(C'\\)</span> or to <span>\\(\\overline{C'}\\)</span>. A similar result was shown by Ephraim for irreducible hypersurfaces before, but his proof is not constructive. Indeed, we show that the complex isomorphism is given by the Taylor series of the diffeomorphism. We also prove an analogous result for the case of non-irreducible hypersurfaces containing an irreducible component that is non-factorable. Moreover, we provide a general overview of the different classifications of plane curve singularities.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00439-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if two germs of plane curves (C, 0) and \((C',0)\) with at least one singular branch are equivalent by a (real) smooth diffeomorphism, then C is complex isomorphic to \(C'\) or to \(\overline{C'}\). A similar result was shown by Ephraim for irreducible hypersurfaces before, but his proof is not constructive. Indeed, we show that the complex isomorphism is given by the Taylor series of the diffeomorphism. We also prove an analogous result for the case of non-irreducible hypersurfaces containing an irreducible component that is non-factorable. Moreover, we provide a general overview of the different classifications of plane curve singularities.

Abstract Image

关于复平面曲线奇异性直至衍射及其刚度的说明
我们证明,如果至少有一个奇异分支的平面曲线(C, 0)和((C',0)\)的两个分支通过(实)光滑差分等价,那么 C 与(C'\)或(\overline{C'}\)是复同构的。Ephraim 曾对不可还原超曲面证明过类似的结果,但他的证明不是构造性的。事实上,我们证明了复同构是由差分的泰勒级数给出的。我们还证明了包含不可因式不可还原成分的不可还原超曲面的类似结果。此外,我们还概述了平面曲线奇点的不同分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信