Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
L A Smirnov, M I Bolotov, A Pikovsky
{"title":"Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators","authors":"L A Smirnov, M I Bolotov, A Pikovsky","doi":"10.1088/2632-072x/ad2ec2","DOIUrl":null,"url":null,"abstract":"We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004 <italic toggle=\"yes\">Phys. Rev. Lett.</italic>\n<bold>93</bold> 174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically chaotic state, with a well-defined synchronous domain and partial coherence in the disordered domain. We characterize it through the correlation function and the Lyapunov spectrum.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"33 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad2ec2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the model of a population of nonlocally coupled identical phase oscillators on a ring (Abrams and Strogatz 2004 Phys. Rev. Lett. 93 174102) and describe traveling patterns. In the continuous in space formulation, we find families of traveling wave solutions for left-right symmetric and asymmetric couplings. Only the simplest of these waves are stable, which is confirmed by numerical simulations for a finite population. We demonstrate that for asymmetric coupling, a weakly turbulent traveling chimera regime is established, both from an initial standing chimera or an unstable traveling wave profile. The weakly turbulent chimera is a macroscopically chaotic state, with a well-defined synchronous domain and partial coherence in the disordered domain. We characterize it through the correlation function and the Lyapunov spectrum.
非局部耦合相同相位振荡器系统中的非均匀扭曲态和旅行嵌合体
我们探讨了环上非局部耦合的相同相位振子群模型(Abrams 和 Strogatz 2004 Phys.在空间连续公式中,我们发现了左右对称和不对称耦合的行波解系列。只有最简单的行波是稳定的,这一点通过对有限群体的数值模拟得到了证实。我们证明,对于非对称耦合,弱湍流行波奇美拉机制是建立在初始静止奇美拉或不稳定行波剖面的基础上的。弱湍流奇美拉是一种宏观混沌状态,具有定义明确的同步域和无序域中的部分相干性。我们通过相关函数和李亚普诺夫频谱来描述它的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信