On Alan Schoen’s I-WP minimal surface

IF 0.6 3区 数学 Q3 MATHEMATICS
Dami Lee, Matthias Weber, A. Tom Yerger
{"title":"On Alan Schoen’s I-WP minimal surface","authors":"Dami Lee,&nbsp;Matthias Weber,&nbsp;A. Tom Yerger","doi":"10.1007/s10455-024-09951-2","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss in detail Alan Schoen’s I-WP surface, an embedded triply periodic minimal surface of genus 4 with cubical symmetries. We exhibit various geometric realizations of this surface with the same conformal structure and use them to prove that the associate family of the I-WP surface contains six surfaces congruent to I-WP at Bonnet angles that are multiples of <span>\\(60^\\circ \\)</span>.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09951-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss in detail Alan Schoen’s I-WP surface, an embedded triply periodic minimal surface of genus 4 with cubical symmetries. We exhibit various geometric realizations of this surface with the same conformal structure and use them to prove that the associate family of the I-WP surface contains six surfaces congruent to I-WP at Bonnet angles that are multiples of \(60^\circ \).

Abstract Image

关于艾伦-舍恩的 I-WP 最小曲面
我们详细讨论了艾伦-舍恩的 I-WP 曲面,这是一个内嵌的三周期极小曲面,属 4,具有立方对称性。我们展示了这个具有相同保角结构的曲面的各种几何实现,并用它们证明了 I-WP 曲面的关联族包含了六个与 I-WP 在波奈角为 \(60^\circ \) 的倍数时全等的、与 I-WP 在波奈角为 \(60^\circ \) 的倍数时全等的、与 I-WP 在波奈角为 \(60^\circ \) 的倍数时全等的曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信