Yunsong Li, Qixin Ba, Wenjun Yuan, Mei Mei, Jia Zhang
{"title":"On the rising dynamics of a Taylor bubble in sudden/gradual expansion tubes filled with viscoelastic liquids","authors":"Yunsong Li, Qixin Ba, Wenjun Yuan, Mei Mei, Jia Zhang","doi":"10.1142/s0217984924503287","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the rise behaviors of Taylor bubbles are investigated in sudden/gradual tubes filled with viscoelastic media via grid adaptive direct numerical simulations (DNS). The exponential Phan–Thien–Tanner (PTT) constitutive model is used to describe the viscoelastic rheological characteristics, and the phase interface is captured via the volume of fluid (VOF) method. The effects of tube structure (diameter ratio and structural angle) and fluid elasticity (expressed by the Weissenberg number <i>Wi</i>) on bubble dynamics have been studied. Our results indicate that bubbles are prone to rupture in the expansion tubes, mainly due to the dual effects of the wall and the elastic relaxation. The fluid elasticity suppresses the jet effect in a sudden expansion tube. Meantime, as the structural angle or the diameter ratio increases, the wall effect is weakened on axial or radial scales, inhibiting the bubble rupture. A large structure angle attenuates the wall effect, while changes in the diameter ratio slow down the radial momentum transfer near the wall region, both of which favor bubble integrity. We also obtain an exponential relationship between the critical rupture time and the structure angle. The dynamical Taylor bubbles can be operated by the structure of the tube and surrounding fluid viscoelasticity, which is of great significance in chemical engineering applications involving complex non-Newtonian fluids.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503287","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the rise behaviors of Taylor bubbles are investigated in sudden/gradual tubes filled with viscoelastic media via grid adaptive direct numerical simulations (DNS). The exponential Phan–Thien–Tanner (PTT) constitutive model is used to describe the viscoelastic rheological characteristics, and the phase interface is captured via the volume of fluid (VOF) method. The effects of tube structure (diameter ratio and structural angle) and fluid elasticity (expressed by the Weissenberg number Wi) on bubble dynamics have been studied. Our results indicate that bubbles are prone to rupture in the expansion tubes, mainly due to the dual effects of the wall and the elastic relaxation. The fluid elasticity suppresses the jet effect in a sudden expansion tube. Meantime, as the structural angle or the diameter ratio increases, the wall effect is weakened on axial or radial scales, inhibiting the bubble rupture. A large structure angle attenuates the wall effect, while changes in the diameter ratio slow down the radial momentum transfer near the wall region, both of which favor bubble integrity. We also obtain an exponential relationship between the critical rupture time and the structure angle. The dynamical Taylor bubbles can be operated by the structure of the tube and surrounding fluid viscoelasticity, which is of great significance in chemical engineering applications involving complex non-Newtonian fluids.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.