Optimal Euclidean Tree Covers

Hsien-Chih Chang, Jonathan Conroy, Hung Le, Lazar Milenkovic, Shay Solomon, Cuong Than
{"title":"Optimal Euclidean Tree Covers","authors":"Hsien-Chih Chang, Jonathan Conroy, Hung Le, Lazar Milenkovic, Shay Solomon, Cuong Than","doi":"arxiv-2403.17754","DOIUrl":null,"url":null,"abstract":"A $(1+\\varepsilon)\\textit{-stretch tree cover}$ of a metric space is a\ncollection of trees, where every pair of points has a $(1+\\varepsilon)$-stretch\npath in one of the trees. The celebrated $\\textit{Dumbbell Theorem}$ [Arya\net~al. STOC'95] states that any set of $n$ points in $d$-dimensional Euclidean\nspace admits a $(1+\\varepsilon)$-stretch tree cover with $O_d(\\varepsilon^{-d}\n\\cdot \\log(1/\\varepsilon))$ trees, where the $O_d$ notation suppresses terms\nthat depend solely on the dimension~$d$. The running time of their construction\nis $O_d(n \\log n \\cdot \\frac{\\log(1/\\varepsilon)}{\\varepsilon^{d}} + n \\cdot\n\\varepsilon^{-2d})$. Since the same point may occur in multiple levels of the\ntree, the $\\textit{maximum degree}$ of a point in the tree cover may be as\nlarge as $\\Omega(\\log \\Phi)$, where $\\Phi$ is the aspect ratio of the input\npoint set. In this work we present a $(1+\\varepsilon)$-stretch tree cover with\n$O_d(\\varepsilon^{-d+1} \\cdot \\log(1/\\varepsilon))$ trees, which is optimal (up\nto the $\\log(1/\\varepsilon)$ factor). Moreover, the maximum degree of points in\nany tree is an $\\textit{absolute constant}$ for any $d$. As a direct corollary,\nwe obtain an optimal {routing scheme} in low-dimensional Euclidean spaces. We\nalso present a $(1+\\varepsilon)$-stretch $\\textit{Steiner}$ tree cover (that\nmay use Steiner points) with $O_d(\\varepsilon^{(-d+1)/{2}} \\cdot\n\\log(1/\\varepsilon))$ trees, which too is optimal. The running time of our two\nconstructions is linear in the number of edges in the respective tree covers,\nignoring an additive $O_d(n \\log n)$ term; this improves over the running time\nunderlying the Dumbbell Theorem.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A $(1+\varepsilon)\textit{-stretch tree cover}$ of a metric space is a collection of trees, where every pair of points has a $(1+\varepsilon)$-stretch path in one of the trees. The celebrated $\textit{Dumbbell Theorem}$ [Arya et~al. STOC'95] states that any set of $n$ points in $d$-dimensional Euclidean space admits a $(1+\varepsilon)$-stretch tree cover with $O_d(\varepsilon^{-d} \cdot \log(1/\varepsilon))$ trees, where the $O_d$ notation suppresses terms that depend solely on the dimension~$d$. The running time of their construction is $O_d(n \log n \cdot \frac{\log(1/\varepsilon)}{\varepsilon^{d}} + n \cdot \varepsilon^{-2d})$. Since the same point may occur in multiple levels of the tree, the $\textit{maximum degree}$ of a point in the tree cover may be as large as $\Omega(\log \Phi)$, where $\Phi$ is the aspect ratio of the input point set. In this work we present a $(1+\varepsilon)$-stretch tree cover with $O_d(\varepsilon^{-d+1} \cdot \log(1/\varepsilon))$ trees, which is optimal (up to the $\log(1/\varepsilon)$ factor). Moreover, the maximum degree of points in any tree is an $\textit{absolute constant}$ for any $d$. As a direct corollary, we obtain an optimal {routing scheme} in low-dimensional Euclidean spaces. We also present a $(1+\varepsilon)$-stretch $\textit{Steiner}$ tree cover (that may use Steiner points) with $O_d(\varepsilon^{(-d+1)/{2}} \cdot \log(1/\varepsilon))$ trees, which too is optimal. The running time of our two constructions is linear in the number of edges in the respective tree covers, ignoring an additive $O_d(n \log n)$ term; this improves over the running time underlying the Dumbbell Theorem.
最优欧氏树冠
度量空间的$(1+\varepsilon)\textit{伸展树覆盖}$ 是树的集合,其中每一对点在其中一棵树上都有一个$(1+\varepsilon)$伸展路径。著名的 $\textit{Dumbbell Theorem}$[Aryaet~al.STOC'95]指出,在 $d$ 维欧几里得空间中的任何 $n$ 点集合都有一个 $(1+\varepsilon)$ 伸展树覆盖,其中有 $O_d(\varepsilon^{-d}\cdot \log(1/\varepsilon))$ 树,这里的 $O_d$ 符号抑制了只取决于维度~$d$ 的项。他们构造的运行时间是 $O_d(n \log n \cdot \frac\{log(1/\varepsilon)}{\varepsilon^{d}}+ n (cdot\varepsilon^{-2d})$.由于同一个点可能出现在树的多个层次中,树覆盖中一个点的 $textit{maximum degree}$ 可能大到 $\Omega(\log \Phi)$,其中 $\Phi$ 是输入点集的长宽比。在这项工作中,我们提出了一种具有$O_d(\varepsilon^{-d+1}的$(1+\varepsilon)$拉伸树覆盖。\cdot \log(1/\varepsilon))$ 树,这是最优的(直到 $\log(1/\varepsilon)$ 因子)。此外,对于任意的 $d$,任何树中点的最大度都是一个 $textit{绝对常数}$。作为直接推论,我们得到了低维欧几里得空间中的最优{路由方案}。我们还提出了一种$(1+\varepsilon)$拉伸$\textit{Steiner}$树覆盖(可以使用 Steiner 点),其最优值为$O_d(\varepsilon^{(-d+1)/{2}}。\cdot\log(1/\varepsilon))$ 树,这也是最优的。我们这两种构造的运行时间与各自树覆盖中的边的数量呈线性关系,忽略了一个加法 $O_d(n \log n)$ 项;这比邓贝尔定理的运行时间有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信