{"title":"Binning Based Data Driven Machine Learning Models for Solar Radiation Forecasting in India","authors":"Anuradha Munshi, R. M. Moharil","doi":"10.1007/s40998-024-00716-y","DOIUrl":null,"url":null,"abstract":"<p>Energy is the primary driving force in improvement of the human life cycle. All the activities for the betterment of human life are dependent on some form of energy. Conventional energy sources rely on fossil fuels which have limited reserves and we are bound to exhaust them soon. On the other hand, non-conventional/renewable energy sources are produced on a regular basis and are clean without any polluting emissions. These sources include solar, wind, hydraulic, biomass/bio gas, geothermal, tidal, etc. Solar energy is one of the primary sources in countries like India, but it does have drawbacks like high initial cost, dependency on weather, expensive storage, space requirement, etc. It is therefore imperative to create accurate solar radiation forecasting models to identify and address these issues. Forecasting models are created based on daily or hourly data and are location specific. In this work, binning based machine learning models are proposed for accurately forecasting hourly solar radiation. These models are data driven clustering based models. The clusters are identified based on geographic locations. The proposed approach also helps reduce the number of required models without compromising the high accuracy. In this work, global and diffuse solar radiation data, gathered from five geographically distinct stations from India, is analyzed. Validation of these models demonstrate increased performance. The number models required are also significantly smaller compared to the daily or hourly models.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00716-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Energy is the primary driving force in improvement of the human life cycle. All the activities for the betterment of human life are dependent on some form of energy. Conventional energy sources rely on fossil fuels which have limited reserves and we are bound to exhaust them soon. On the other hand, non-conventional/renewable energy sources are produced on a regular basis and are clean without any polluting emissions. These sources include solar, wind, hydraulic, biomass/bio gas, geothermal, tidal, etc. Solar energy is one of the primary sources in countries like India, but it does have drawbacks like high initial cost, dependency on weather, expensive storage, space requirement, etc. It is therefore imperative to create accurate solar radiation forecasting models to identify and address these issues. Forecasting models are created based on daily or hourly data and are location specific. In this work, binning based machine learning models are proposed for accurately forecasting hourly solar radiation. These models are data driven clustering based models. The clusters are identified based on geographic locations. The proposed approach also helps reduce the number of required models without compromising the high accuracy. In this work, global and diffuse solar radiation data, gathered from five geographically distinct stations from India, is analyzed. Validation of these models demonstrate increased performance. The number models required are also significantly smaller compared to the daily or hourly models.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.