Analysis of Strong Coupling Constant with Machine Learning and Its Application

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Xiao-Yun Wang, Chen Dong, Xiang Liu
{"title":"Analysis of Strong Coupling Constant with Machine Learning and Its Application","authors":"Xiao-Yun Wang, Chen Dong, Xiang Liu","doi":"10.1088/0256-307x/41/3/031201","DOIUrl":null,"url":null,"abstract":"We investigate the nature of the strong coupling constant and related physics. Through the analysis of accumulated experimental data around the world, we employ the ability of machine learning to unravel its physical laws. The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range. Importantly, this newly derived expression is very similar to the formula derived from the Dyson–Schwinger equations based on the framework of Yang–Mills theory. By introducing the Euler number <italic toggle=\"yes\">e</italic> into the functional formula of the strong coupling constant at high energies, we successfully solve the puzzle of the infrared divergence, which allows for a seamless transition of the strong coupling constant from the perturbative to the non-perturbative energy regime. Moreover, the obtained ghost and gluon dressing function distribution results confirm that the obtained strong coupling constant formula can well describe the physical properties of the non-perturbed regime. In addition, we study the quantum-chromodynamics strong coupling constant result of the Bjorken sum rule <inline-formula>\n<tex-math>\n<?CDATA ${\\varGamma }_{1}^{p-n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>Γ</mml:mi><mml:mn>1</mml:mn><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"cpl_41_3_031201_ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and the quark–quark static energy <italic toggle=\"yes\">E</italic>\n<sub>0</sub>(<italic toggle=\"yes\">r</italic>), and find that the global energy scale can effectively interpret the experimental data. The present results shed light on the puzzling properties of quantum chromodynamics and the intricate interplay of strong coupling constants at both low and high energy scales.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/3/031201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the nature of the strong coupling constant and related physics. Through the analysis of accumulated experimental data around the world, we employ the ability of machine learning to unravel its physical laws. The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range. Importantly, this newly derived expression is very similar to the formula derived from the Dyson–Schwinger equations based on the framework of Yang–Mills theory. By introducing the Euler number e into the functional formula of the strong coupling constant at high energies, we successfully solve the puzzle of the infrared divergence, which allows for a seamless transition of the strong coupling constant from the perturbative to the non-perturbative energy regime. Moreover, the obtained ghost and gluon dressing function distribution results confirm that the obtained strong coupling constant formula can well describe the physical properties of the non-perturbed regime. In addition, we study the quantum-chromodynamics strong coupling constant result of the Bjorken sum rule Γ1pn and the quark–quark static energy E 0(r), and find that the global energy scale can effectively interpret the experimental data. The present results shed light on the puzzling properties of quantum chromodynamics and the intricate interplay of strong coupling constants at both low and high energy scales.
强耦合常数与机器学习及其应用分析
我们研究强耦合常数的性质和相关物理学。通过分析世界各地积累的实验数据,我们利用机器学习的能力来揭示其物理规律。我们努力的结果是得到了一个公式,它捕捉到了强耦合常数在整个能量范围内分布的广阔全景。重要的是,这个新导出的表达式与基于杨-米尔斯理论框架的戴森-施温格方程导出的公式非常相似。通过在高能强耦合常数的函数式中引入欧拉数 e,我们成功地解决了红外发散的难题,从而实现了强耦合常数从微扰能量体系到非微扰能量体系的无缝过渡。此外,所得到的幽灵和胶子敷料函数分布结果证实,所得到的强耦合常数公式可以很好地描述非微扰体系的物理特性。此外,我们还研究了比约肯和规则的量子-色动力学强耦合常数结果Γ1p-n 和夸克-夸克静态能量 E0(r),发现全局能量尺度可以有效地解释实验数据。这些结果揭示了量子色动力学令人费解的性质,以及强耦合常数在低能量尺度和高能量尺度上错综复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信