{"title":"Dimension reduction and homogenization of composite plate with matrix pre-strain","authors":"Amartya Chakrabortty, Georges Griso, Julia Orlik","doi":"10.3233/asy-241896","DOIUrl":null,"url":null,"abstract":"This paper focuses on the simultaneous homogenization and dimension reduction of periodic composite plates within the framework of non-linear elasticity. The composite plate in its reference (undeformed) configuration consists of a periodic perforated plate made of stiff material with holes filledby a soft matrix material. The structure is clamped on a cylindrical part. Two cases of asymptotic analysis are considered: one without pre-strain and the other with matrix pre-strain. In both cases, the total elastic energy is in the von-Kármán (vK) regime (ε5). A new splitting of the displacements is introduced to analyze the asymptotic behavior. The displacements are decomposed using the Kirchhoff–Love (KL) plate displacement decomposition. The use of a re-scaling unfolding operator allows for deriving the asymptotic behavior of the Green St. Venant’s strain tensor in terms of displacements. The limit homogenized energy is shown to be of vK type with linear elastic cell problems, established using the Γ-convergence. Additionally, it is shown that for isotropic homogenized material, our limit vK plate is orthotropic. The derived results have practical applications in the design and analysis of composite structures.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"21 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241896","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the simultaneous homogenization and dimension reduction of periodic composite plates within the framework of non-linear elasticity. The composite plate in its reference (undeformed) configuration consists of a periodic perforated plate made of stiff material with holes filledby a soft matrix material. The structure is clamped on a cylindrical part. Two cases of asymptotic analysis are considered: one without pre-strain and the other with matrix pre-strain. In both cases, the total elastic energy is in the von-Kármán (vK) regime (ε5). A new splitting of the displacements is introduced to analyze the asymptotic behavior. The displacements are decomposed using the Kirchhoff–Love (KL) plate displacement decomposition. The use of a re-scaling unfolding operator allows for deriving the asymptotic behavior of the Green St. Venant’s strain tensor in terms of displacements. The limit homogenized energy is shown to be of vK type with linear elastic cell problems, established using the Γ-convergence. Additionally, it is shown that for isotropic homogenized material, our limit vK plate is orthotropic. The derived results have practical applications in the design and analysis of composite structures.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.