Reaction–diffusion systems derived from kinetic theory for Multiple Sclerosis

João Miguel Oliveira, Romina Travaglini
{"title":"Reaction–diffusion systems derived from kinetic theory for Multiple Sclerosis","authors":"João Miguel Oliveira, Romina Travaglini","doi":"10.1142/s0218202524500222","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a mathematical study for the development of Multiple Sclerosis in which a spatio-temporal kinetic theory model describes, at the mesoscopic level, the dynamics of a high number of interacting agents. We consider both interactions among different populations of human cells and the motion of immune cells, stimulated by cytokines. Moreover, we reproduce the consumption of myelin sheath due to anomalously activated lymphocytes and its restoration by oligodendrocytes. Successively, we fix a small time parameter and assume that the considered processes occur at different scales. This allows us to perform a formal limit, obtaining macroscopic reaction–diffusion equations for the number densities with a chemotaxis term. A natural step is then to study the system, inquiring about the formation of spatial patterns through a Turing instability analysis of the problem and basing the discussion on the microscopic parameters of the model. In particular, we get spatial patterns oscillating in time that may reproduce brain lesions characteristic of different phases of the pathology.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a mathematical study for the development of Multiple Sclerosis in which a spatio-temporal kinetic theory model describes, at the mesoscopic level, the dynamics of a high number of interacting agents. We consider both interactions among different populations of human cells and the motion of immune cells, stimulated by cytokines. Moreover, we reproduce the consumption of myelin sheath due to anomalously activated lymphocytes and its restoration by oligodendrocytes. Successively, we fix a small time parameter and assume that the considered processes occur at different scales. This allows us to perform a formal limit, obtaining macroscopic reaction–diffusion equations for the number densities with a chemotaxis term. A natural step is then to study the system, inquiring about the formation of spatial patterns through a Turing instability analysis of the problem and basing the discussion on the microscopic parameters of the model. In particular, we get spatial patterns oscillating in time that may reproduce brain lesions characteristic of different phases of the pathology.

多发性硬化症动力学理论衍生的反应-扩散系统
在本文中,我们介绍了一项关于多发性硬化症发展的数学研究,其中的时空动力学理论模型在介观层面上描述了大量相互作用因子的动态变化。我们既考虑了不同人体细胞群之间的相互作用,也考虑了免疫细胞在细胞因子刺激下的运动。此外,我们还再现了异常活化的淋巴细胞对髓鞘的消耗以及少突胶质细胞对髓鞘的修复。我们先后固定了一个较小的时间参数,并假设所考虑的过程发生在不同的尺度上。这样,我们就能进行形式极限,得到带有趋化项的数量密度的宏观反应-扩散方程。研究该系统的一个自然步骤是,通过对问题的图灵不稳定性分析和基于模型微观参数的讨论,探究空间模式的形成。特别是,我们得到了在时间上振荡的空间模式,它可能再现不同病理阶段的脑部病变特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信