THE (IN)EFFICIENCY OF USA EDUCATION GROUP STOCKS: BEFORE, DURING AND AFTER COVID-19

Fractals Pub Date : 2024-03-26 DOI:10.1142/s0218348x24500476
LEONARDO H. S. FERNANDES, JOSÉ P. V. FERNANDES, JOSÉ W. L. SILVA, RANILSON O. A. PAIVA, IBSEN M. B. S. PINTO, FERNANDO H. A. DE ARAÚJO
{"title":"THE (IN)EFFICIENCY OF USA EDUCATION GROUP STOCKS: BEFORE, DURING AND AFTER COVID-19","authors":"LEONARDO H. S. FERNANDES, JOSÉ P. V. FERNANDES, JOSÉ W. L. SILVA, RANILSON O. A. PAIVA, IBSEN M. B. S. PINTO, FERNANDO H. A. DE ARAÚJO","doi":"10.1142/s0218348x24500476","DOIUrl":null,"url":null,"abstract":"<p>This paper represents a pioneering effort to investigate multifractal dynamics that exclusively encompass the return time series of USA Education Group Stocks concerning two non-overlapping periods (before, during, and after COVID-19). Given this, we employ the Multifractal Detrended Fluctuations Analysis (MF-DFA). In this sense, we investigate the generalized Hurst exponent <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo stretchy=\"false\">(</mo><mi>q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and the Rényi exponent <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi><mo stretchy=\"false\">(</mo><mi>q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for each asset and quantify their statistical properties, which allowed us to observe separately the contributing small scale (primarily via the negative moments <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>) and the large scale (via the positive moments <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>). We perform a fourth-degree polynomial regression fit to estimate the complexity parameters that describe the degree of multifractality of the underlying process. Also, we shall apply the inefficiency multifractal index to assess the COVID-19 shock for both periods. Our findings show that for both periods, the majority of these assets are marked by multifractal dynamics associated with persistent behavior <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, a higher degree of multifractality and the dominance of large fluctuations. At the same time, most of these assets show asymmetry parameter <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>R</mi><mo>&gt;</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> for both periods, indicating that large fluctuations contributed more to multifractality in the time series of returns.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper represents a pioneering effort to investigate multifractal dynamics that exclusively encompass the return time series of USA Education Group Stocks concerning two non-overlapping periods (before, during, and after COVID-19). Given this, we employ the Multifractal Detrended Fluctuations Analysis (MF-DFA). In this sense, we investigate the generalized Hurst exponent h(q) and the Rényi exponent τ(q) for each asset and quantify their statistical properties, which allowed us to observe separately the contributing small scale (primarily via the negative moments q) and the large scale (via the positive moments q). We perform a fourth-degree polynomial regression fit to estimate the complexity parameters that describe the degree of multifractality of the underlying process. Also, we shall apply the inefficiency multifractal index to assess the COVID-19 shock for both periods. Our findings show that for both periods, the majority of these assets are marked by multifractal dynamics associated with persistent behavior (α0>0.5), a higher degree of multifractality and the dominance of large fluctuations. At the same time, most of these assets show asymmetry parameter (R>1) for both periods, indicating that large fluctuations contributed more to multifractality in the time series of returns.

美国教育集团股票的(不)效率:美国教育集团股票的(非)效率:COVID-19 之前、期间和之后
本文开创性地研究了美国教育集团股票在两个非重叠时期(COVID-19 之前、期间和之后)的回报时间序列的多分形动态。有鉴于此,我们采用了多分形去趋势波动分析法(MF-DFA)。从这个意义上说,我们研究了每种资产的广义赫斯特指数 h(q)和雷尼指数 τ(q),并量化了它们的统计属性,这使我们能够分别观察小尺度(主要通过负矩 q)和大尺度(通过正矩 q)的贡献。我们通过四度多项式回归拟合来估算复杂性参数,这些参数描述了基础过程的多重性程度。此外,我们还将采用无效率多分形指数来评估两个时期的 COVID-19 冲击。我们的研究结果表明,在这两个时期,大多数资产都具有与持续行为(α0>0.5)相关的多分形动态特征、较高的多分形程度以及大波动的主导地位。同时,这些资产中的大多数在两个时期都显示出不对称参数(R>1),表明大波动对回报时间序列的多分形性贡献更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信