APPLICATION OF FRACTIONAL-ORDER INTEGRAL TRANSFORMS IN THE DIAGNOSIS OF ELECTRICAL SYSTEM CONDITIONS

Fractals Pub Date : 2024-03-26 DOI:10.1142/s0218348x24500592
H. M. CORTÉS CAMPOS, J. F. GÓMEZ-AGUILAR, C. J. ZÚÑIGA-AGUILAR, L. F. AVALOS-RUIZ, J. E. LAVÍN-DELGADO
{"title":"APPLICATION OF FRACTIONAL-ORDER INTEGRAL TRANSFORMS IN THE DIAGNOSIS OF ELECTRICAL SYSTEM CONDITIONS","authors":"H. M. CORTÉS CAMPOS, J. F. GÓMEZ-AGUILAR, C. J. ZÚÑIGA-AGUILAR, L. F. AVALOS-RUIZ, J. E. LAVÍN-DELGADO","doi":"10.1142/s0218348x24500592","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a methodology for the diagnosis of electrical system conditions using fractional-order integral transforms for feature extraction. This work proposes three feature extraction algorithms using the Fractional Fourier Transform (FRFT), the Fourier Transform combined with the Mittag-Leffler function, and the Wavelet Transform (WT). Each algorithm extracts data from an electrical system to obtain a set of features that are classified by an Artificial Neural Network to determine the system’s condition. The algorithms are utilized in diagnosing two types of electrical machine faults, one in a photovoltaic system, and another in classifying the power quality disturbances (PQDs). An optimization algorithm is suggested to find the optimal orders of integral transforms. The obtained results demonstrate the system’s effective diagnosis, displaying superior performance in classifying the faults and PQDs with complex signals.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a methodology for the diagnosis of electrical system conditions using fractional-order integral transforms for feature extraction. This work proposes three feature extraction algorithms using the Fractional Fourier Transform (FRFT), the Fourier Transform combined with the Mittag-Leffler function, and the Wavelet Transform (WT). Each algorithm extracts data from an electrical system to obtain a set of features that are classified by an Artificial Neural Network to determine the system’s condition. The algorithms are utilized in diagnosing two types of electrical machine faults, one in a photovoltaic system, and another in classifying the power quality disturbances (PQDs). An optimization algorithm is suggested to find the optimal orders of integral transforms. The obtained results demonstrate the system’s effective diagnosis, displaying superior performance in classifying the faults and PQDs with complex signals.

分数阶积分变换在电气系统状况诊断中的应用
本文提出了一种利用分数阶积分变换进行特征提取的电气系统状况诊断方法。这项工作提出了三种特征提取算法,分别使用分数傅里叶变换 (FRFT)、结合 Mittag-Leffler 函数的傅里叶变换和小波变换 (WT)。每种算法都从电气系统中提取数据,获得一组特征,通过人工神经网络对这些特征进行分类,从而确定系统的状况。这些算法被用于诊断两种类型的电机故障,一种是光伏系统故障,另一种是电能质量干扰(PQD)分类。还提出了一种优化算法来寻找积分变换的最佳阶数。结果表明,该系统能有效地进行诊断,在对故障和具有复杂信号的电能质量干扰进行分类方面表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信