ON MULTIPLICATIVE (s,P)-CONVEXITY AND RELATED FRACTIONAL INEQUALITIES WITHIN MULTIPLICATIVE CALCULUS

Fractals Pub Date : 2024-03-22 DOI:10.1142/s0218348x24500488
YU PENG, TINGSONG DU
{"title":"ON MULTIPLICATIVE (s,P)-CONVEXITY AND RELATED FRACTIONAL INEQUALITIES WITHIN MULTIPLICATIVE CALCULUS","authors":"YU PENG, TINGSONG DU","doi":"10.1142/s0218348x24500488","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a fresh conception about convexity, known as the multiplicative <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>s</mi><mo>,</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-convexity. Along with this direction, we research the properties of such type of convexity. In the framework of multiplicative fractional Riemann–Liouville integrals and under the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span>differentiable <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>s</mi><mo>,</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-convexity, we investigate the multiplicative fractional inequalities, including the Hermite–Hadamard- and Newton-type inequalities. To further verify the validity of our primary outcomes, we give a few numerical examples. As applications, we proffer a number of inequalities of multiplicative type in special means as well.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a fresh conception about convexity, known as the multiplicative (s,P)-convexity. Along with this direction, we research the properties of such type of convexity. In the framework of multiplicative fractional Riemann–Liouville integrals and under the differentiable (s,P)-convexity, we investigate the multiplicative fractional inequalities, including the Hermite–Hadamard- and Newton-type inequalities. To further verify the validity of our primary outcomes, we give a few numerical examples. As applications, we proffer a number of inequalities of multiplicative type in special means as well.

关于多元回归计算中的多元(s,P)相等性及相关的分数不等式
本文提出了一种全新的凸性概念,即乘法(s,P)凸性。沿着这个方向,我们研究了这类凸性的性质。在乘法分数黎曼-刘维尔积分的框架内,在∗可变(s,P)凸性下,我们研究了乘法分数不等式,包括赫米特-哈达玛不等式和牛顿式不等式。为了进一步验证我们主要成果的有效性,我们给出了一些数值示例。作为应用,我们还提出了一些乘法类型的特殊不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信