{"title":"Fano resonance in molecular junctions of spin crossover complexes†","authors":"Hua Hao, Honghao Li, Ting Jia, Yanhong Zhou and Xiaohong Zheng","doi":"10.1039/D3CP06178G","DOIUrl":null,"url":null,"abstract":"<p >In this paper, we introduce a novel molecular switch paradigm that integrates spin crossover complexes with the Fano resonance effect. Specifically, by performing density-functional theory calculations, the feasibility of achieving Fano resonance using spin crossover complexes is demonstrated in our designed molecular junctions using the complex {Fe[H<small><sub>2</sub></small>B(pz)<small><sub>2</sub></small>]<small><sub>2</sub></small>[Bp(bipy)]} [pz = 1-pyrazolyl, Bp(bipy) = bis(phenylethynyl)(2,2′-bipyridine)]. It is further revealed that the Fano resonance, particularly the Fano dip, is most prominent in the junction with cobalt tips among all the schemes, together with the spin-filtering effect. Most importantly, this junction of cobalt tips is able to exhibit three distinct conductance states, which are controlled by the modulation of Fano resonance due to the spin-state transition of the complex and the applied gate voltage. Such a molecular switch paradigm holds potential for applications in logic gates, memory units, sensors, thermoelectrics, and beyond.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 16","pages":" 12652-12660"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d3cp06178g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a novel molecular switch paradigm that integrates spin crossover complexes with the Fano resonance effect. Specifically, by performing density-functional theory calculations, the feasibility of achieving Fano resonance using spin crossover complexes is demonstrated in our designed molecular junctions using the complex {Fe[H2B(pz)2]2[Bp(bipy)]} [pz = 1-pyrazolyl, Bp(bipy) = bis(phenylethynyl)(2,2′-bipyridine)]. It is further revealed that the Fano resonance, particularly the Fano dip, is most prominent in the junction with cobalt tips among all the schemes, together with the spin-filtering effect. Most importantly, this junction of cobalt tips is able to exhibit three distinct conductance states, which are controlled by the modulation of Fano resonance due to the spin-state transition of the complex and the applied gate voltage. Such a molecular switch paradigm holds potential for applications in logic gates, memory units, sensors, thermoelectrics, and beyond.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.