{"title":"Editorial Special Section on Coordination, Cooperation, and Control of Autonomous Vehicles in Smart Connected Road Environments","authors":"Alberto Petrillo;Stefania Santini","doi":"10.1109/OJITS.2024.3377216","DOIUrl":null,"url":null,"abstract":"Mobility is facing a transformation in terms of connectivity, allowing vehicles to communicate with each other, to the road infrastructure, and to other road users. This enables coordination and cooperation, hence managing traffic and mobility at an entirely new level. Indeed, Cooperative, Connected and Automated Mobility enables and provides ITS services with better Quality of Service (QoS), compared to the same ITS services by only one of the ITS sub-systems (personal, vehicle, roadside, and central, infrastructures), thus improving the road management, reducing congestion, and contributing to sustainable and eco-mobility. By leveraging a network of Smart Infrastructures, it is possible to be continuously and promptly aware about the circulation and environment conditions, as well as the status of connected devices, along with the related technological services. Such knowledge, gained via the adoption of advanced sensing/communication technologies, has the potential to fundamentally shift the mobility paradigm towards mobility as a service. This contributes to more safe, efficient, and comfortable transportation systems. Along this line, information is continuously communicated/shared to vehicles and travellers thanks to dedicated communication services, thus enabling mobility automation and control. Different services - such as providing information about traffic light signal phases and their predicted changes or barriers on the route in realtime- support smooth and comfortable traveling by avoiding strong accelerations/decelerations, by reducing fuel/energy consumption of vehicles with favoured effects on lowering noise and emissions. In this perspective, the special section aims at exploring how to face Coordination and Cooperation challenges for autonomous vehicles in this new connected environment, also in the transition phase where connected human-driven vehicles are present.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"202-204"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480881","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10480881/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mobility is facing a transformation in terms of connectivity, allowing vehicles to communicate with each other, to the road infrastructure, and to other road users. This enables coordination and cooperation, hence managing traffic and mobility at an entirely new level. Indeed, Cooperative, Connected and Automated Mobility enables and provides ITS services with better Quality of Service (QoS), compared to the same ITS services by only one of the ITS sub-systems (personal, vehicle, roadside, and central, infrastructures), thus improving the road management, reducing congestion, and contributing to sustainable and eco-mobility. By leveraging a network of Smart Infrastructures, it is possible to be continuously and promptly aware about the circulation and environment conditions, as well as the status of connected devices, along with the related technological services. Such knowledge, gained via the adoption of advanced sensing/communication technologies, has the potential to fundamentally shift the mobility paradigm towards mobility as a service. This contributes to more safe, efficient, and comfortable transportation systems. Along this line, information is continuously communicated/shared to vehicles and travellers thanks to dedicated communication services, thus enabling mobility automation and control. Different services - such as providing information about traffic light signal phases and their predicted changes or barriers on the route in realtime- support smooth and comfortable traveling by avoiding strong accelerations/decelerations, by reducing fuel/energy consumption of vehicles with favoured effects on lowering noise and emissions. In this perspective, the special section aims at exploring how to face Coordination and Cooperation challenges for autonomous vehicles in this new connected environment, also in the transition phase where connected human-driven vehicles are present.