CAFA-evaluator: a Python tool for benchmarking ontological classification methods.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-03-14 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae043
Damiano Piovesan, Davide Zago, Parnal Joshi, M Clara De Paolis Kaluza, Mahta Mehdiabadi, Rashika Ramola, Alexander Miguel Monzon, Walter Reade, Iddo Friedberg, Predrag Radivojac, Silvio C E Tosatto
{"title":"CAFA-evaluator: a Python tool for benchmarking ontological classification methods.","authors":"Damiano Piovesan, Davide Zago, Parnal Joshi, M Clara De Paolis Kaluza, Mahta Mehdiabadi, Rashika Ramola, Alexander Miguel Monzon, Walter Reade, Iddo Friedberg, Predrag Radivojac, Silvio C E Tosatto","doi":"10.1093/bioadv/vbae043","DOIUrl":null,"url":null,"abstract":"<p><p>We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software.</p><p><strong>Availability and implementation: </strong>https://pypi.org/project/cafaeval.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae043"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software.

Availability and implementation: https://pypi.org/project/cafaeval.

CAFA-evaluator:本体分类方法基准测试的 Python 工具。
我们介绍的 CAFA-evaluator 是一个功能强大的 Python 程序,旨在评估预测方法在具有分层概念依赖关系的目标上的性能。它将多标签评估推广到了现代本体,在现代本体中,预测目标来自有向无环图,并通过利用矩阵计算和拓扑排序实现了高效率。程序要求包括少量标准 Python 库,因此 CAFA-evaluator 易于维护。代码复制了蛋白质功能注释关键评估(CAFA)基准,该基准评估基因本体中一致子图的预测。由于其可靠性和准确性,主办方选择 CAFA-evaluator 作为 CAFA 的官方评估软件。可用性和实施:https://pypi.org/project/cafaeval。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信