Molecular basis of human poly(A) polymerase recruitment by mPSF.

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2024-06-17 DOI:10.1261/rna.079915.123
Sofia Todesca, Felix Sandmeir, Achim Keidel, Elena Conti
{"title":"Molecular basis of human poly(A) polymerase recruitment by mPSF.","authors":"Sofia Todesca, Felix Sandmeir, Achim Keidel, Elena Conti","doi":"10.1261/rna.079915.123","DOIUrl":null,"url":null,"abstract":"<p><p>3' end processing of most eukaryotic precursor-mRNAs (pre-mRNAs) is a crucial cotranscriptional process that generally involves the cleavage and polyadenylation of the precursor transcripts. Within the human 3' end processing machinery, the four-subunit mammalian polyadenylation specificity factor (mPSF) recognizes the polyadenylation signal (PAS) in the pre-mRNA and recruits the poly(A) polymerase α (PAPOA) to it. To shed light on the molecular mechanisms of PAPOA recruitment to mPSF, we used a combination of cryogenic-electron microscopy (cryo-EM) single-particle analysis, computational structure prediction, and in vitro biochemistry to reveal an intricate interaction network. A short linear motif in the mPSF subunit FIP1 interacts with the structured core of human PAPOA, with a binding mode that is evolutionarily conserved from yeast to human. In higher eukaryotes, however, PAPOA contains a conserved C-terminal motif that can interact intramolecularly with the same residues of the PAPOA structured core used to bind FIP1. Interestingly, using biochemical assay and cryo-EM structural analysis, we found that the PAPOA C-terminal motif can also directly interact with mPSF at the subunit CPSF160. These results show that PAPOA recruitment to mPSF is mediated by two distinct intermolecular connections and further suggest the presence of mutually exclusive interactions in the regulation of 3' end processing.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"795-806"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.079915.123","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

3' end processing of most eukaryotic precursor-mRNAs (pre-mRNAs) is a crucial cotranscriptional process that generally involves the cleavage and polyadenylation of the precursor transcripts. Within the human 3' end processing machinery, the four-subunit mammalian polyadenylation specificity factor (mPSF) recognizes the polyadenylation signal (PAS) in the pre-mRNA and recruits the poly(A) polymerase α (PAPOA) to it. To shed light on the molecular mechanisms of PAPOA recruitment to mPSF, we used a combination of cryogenic-electron microscopy (cryo-EM) single-particle analysis, computational structure prediction, and in vitro biochemistry to reveal an intricate interaction network. A short linear motif in the mPSF subunit FIP1 interacts with the structured core of human PAPOA, with a binding mode that is evolutionarily conserved from yeast to human. In higher eukaryotes, however, PAPOA contains a conserved C-terminal motif that can interact intramolecularly with the same residues of the PAPOA structured core used to bind FIP1. Interestingly, using biochemical assay and cryo-EM structural analysis, we found that the PAPOA C-terminal motif can also directly interact with mPSF at the subunit CPSF160. These results show that PAPOA recruitment to mPSF is mediated by two distinct intermolecular connections and further suggest the presence of mutually exclusive interactions in the regulation of 3' end processing.

mPSF 招募人类 polyA 聚合酶的分子基础。
大多数真核生物前 mRNA 的 3'端处理是一个关键的共转录过程,通常涉及前体转录本的裂解和多腺苷酸化。在人类 3' 端处理机制中,4 个亚基的哺乳动物多聚腺苷酸特异性因子(mPSF)能识别前 mRNA 中的多聚腺苷酸化信号(PAS),并将多聚酶 α(PAPOA)招募到该信号上。为了揭示 PAPOA 招募到 mPSF 的分子机制,我们结合使用了低温电子显微镜(cryo-EM)单颗粒分析、计算结构预测和体外生物化学方法,揭示了一个错综复杂的相互作用网络。mPSF 亚基 FIP1 中的一个短线性基团与人类 PAPOA 的结构核心相互作用,其结合模式从酵母到人类都是进化保守的。然而,在高等真核生物中,PAPOA 包含一个保守的 C 端主题,它能与用于结合 FIP1 的 PAPOA 结构核心的相同残基发生分子内相互作用。有趣的是,通过生化检测和低温电子显微镜结构分析,我们发现 PAPOA C 端基团还能直接与 mPSF 亚基 CPSF160 相互作用。这些结果表明,PAPOA 对 mPSF 的招募是由两种不同的分子间连接介导的,并进一步表明在调控 3' 端处理过程中存在相互排斥的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信