Md Moksedul Momin, Xuan Zhou, Elina Hyppönen, Beben Benyamin, S Hong Lee
{"title":"Cross-ancestry genetic architecture and prediction for cholesterol traits.","authors":"Md Moksedul Momin, Xuan Zhou, Elina Hyppönen, Beben Benyamin, S Hong Lee","doi":"10.1007/s00439-024-02660-7","DOIUrl":null,"url":null,"abstract":"<p><p>While cholesterol is essential, a high level of cholesterol is associated with the risk of cardiovascular diseases. Genome-wide association studies (GWASs) have proven successful in identifying genetic variants that are linked to cholesterol levels, predominantly in white European populations. However, the extent to which genetic effects on cholesterol vary across different ancestries remains largely unexplored. Here, we estimate cross-ancestry genetic correlation to address questions on how genetic effects are shared across ancestries. We find significant genetic heterogeneity between ancestries for cholesterol traits. Furthermore, we demonstrate that single nucleotide polymorphisms (SNPs) with concordant effects across ancestries for cholesterol are more frequently found in regulatory regions compared to other genomic regions. Indeed, the positive genetic covariance between ancestries is mostly driven by the effects of the concordant SNPs, whereas the genetic heterogeneity is attributed to the discordant SNPs. We also show that the predictive ability of the concordant SNPs is significantly higher than the discordant SNPs in the cross-ancestry polygenic prediction. The list of concordant SNPs for cholesterol is available in GWAS Catalog. These findings have relevance for the understanding of shared genetic architecture across ancestries, contributing to the development of clinical strategies for polygenic prediction of cholesterol in cross-ancestral settings.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02660-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
While cholesterol is essential, a high level of cholesterol is associated with the risk of cardiovascular diseases. Genome-wide association studies (GWASs) have proven successful in identifying genetic variants that are linked to cholesterol levels, predominantly in white European populations. However, the extent to which genetic effects on cholesterol vary across different ancestries remains largely unexplored. Here, we estimate cross-ancestry genetic correlation to address questions on how genetic effects are shared across ancestries. We find significant genetic heterogeneity between ancestries for cholesterol traits. Furthermore, we demonstrate that single nucleotide polymorphisms (SNPs) with concordant effects across ancestries for cholesterol are more frequently found in regulatory regions compared to other genomic regions. Indeed, the positive genetic covariance between ancestries is mostly driven by the effects of the concordant SNPs, whereas the genetic heterogeneity is attributed to the discordant SNPs. We also show that the predictive ability of the concordant SNPs is significantly higher than the discordant SNPs in the cross-ancestry polygenic prediction. The list of concordant SNPs for cholesterol is available in GWAS Catalog. These findings have relevance for the understanding of shared genetic architecture across ancestries, contributing to the development of clinical strategies for polygenic prediction of cholesterol in cross-ancestral settings.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.