{"title":"Colonization of a Novel Host Plant Reduces Phenotypic Variation","authors":"","doi":"10.1007/s11692-024-09634-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Understanding the evolution of evolvability—the evolutionary potential of populations—is key to predicting adaptation to novel environments. Despite growing evidence that evolvability structures adaptation, it remains unclear how adaptation to novel environments in turn influences evolvability. Here we address the interplay between adaptation and evolvability in the peacock fly <em>Tephritis conura,</em> which recently underwent an adaptive change in ovipositor length following a host shift. We compared the evolvability of morphological traits, including ovipositor length, between the ancestral and the derived host race. We found that mean evolvability was reduced in females of the derived host race compared to the ancestral host race. However, patterns of multivariate evolvability (considering trait covariances) were very similar in both host races, and populations of the derived host race had diverged from the ancestral host race in directions of greater-than-average evolvability. Exploration of phenotypic integration patterns further revealed relatively high levels of independent variation in ovipositor length compared to other measured traits, allowing some degree of independent divergence. Our findings suggest that adaptation to novel environments can reduce mean evolvability without major changes in patterns of variational constraints, and that trait autonomy helps facilitate divergence of functionally important traits.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-024-09634-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the evolution of evolvability—the evolutionary potential of populations—is key to predicting adaptation to novel environments. Despite growing evidence that evolvability structures adaptation, it remains unclear how adaptation to novel environments in turn influences evolvability. Here we address the interplay between adaptation and evolvability in the peacock fly Tephritis conura, which recently underwent an adaptive change in ovipositor length following a host shift. We compared the evolvability of morphological traits, including ovipositor length, between the ancestral and the derived host race. We found that mean evolvability was reduced in females of the derived host race compared to the ancestral host race. However, patterns of multivariate evolvability (considering trait covariances) were very similar in both host races, and populations of the derived host race had diverged from the ancestral host race in directions of greater-than-average evolvability. Exploration of phenotypic integration patterns further revealed relatively high levels of independent variation in ovipositor length compared to other measured traits, allowing some degree of independent divergence. Our findings suggest that adaptation to novel environments can reduce mean evolvability without major changes in patterns of variational constraints, and that trait autonomy helps facilitate divergence of functionally important traits.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.