SUBCOMPLEXES OF CERTAIN FREE RESOLUTIONS

IF 0.8 2区 数学 Q2 MATHEMATICS
MAYA BANKS, ALEKSANDRA SOBIESKA
{"title":"SUBCOMPLEXES OF CERTAIN FREE RESOLUTIONS","authors":"MAYA BANKS, ALEKSANDRA SOBIESKA","doi":"10.1017/nmj.2024.7","DOIUrl":null,"url":null,"abstract":"We invoke the Bernstein–Gel<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000072_inline1.png\" /> <jats:tex-math> $'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>fand–Gel<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000072_inline2.png\" /> <jats:tex-math> $'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We invoke the Bernstein–Gel $'$ fand–Gel $'$ fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.
某些自由决议的子复数
我们引用伯恩斯坦-格尔$'$范德-格尔$'$范德(BGG)对应关系来研究由两个著名复数--科斯祖尔(Koszul)和埃贡-诺斯考特(Eagon-Northcott)--给出的自由解析子复数。在科斯祖尔情况下,这种方法提供了子复数中自由模块等级的完整表征,而在埃贡-诺斯考特情况下,则施加了数值限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信