Strong convergence of split equality variational inequality, variational inclusion, and multiple sets fixed point problems in Hilbert spaces with application
{"title":"Strong convergence of split equality variational inequality, variational inclusion, and multiple sets fixed point problems in Hilbert spaces with application","authors":"Charu Batra, Renu Chugh, Rajeev Kumar, Khaled Suwais, Sally Almanasra, Nabil Mlaiki","doi":"10.1186/s13660-024-03118-0","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative inertial simultaneous cyclic iterative algorithm designed to address a range of mathematical problems within the realm of split equality variational inequalities. Specifically, the algorithm accommodates finite families of split equality variational inequality problems, infinite families of split equality variational inclusion problems, and multiple-sets split equality fixed point problems involving demicontractive operators in infinite-dimensional Hilbert spaces. The algorithm integrates well-established methods, including the cyclic method, the inertial method, the viscosity approximation method, and the projection method. We establish the strong convergence of this proposed algorithm, demonstrating its applicability in various scenarios and unifying disparate findings from existing literature. Additionally, a numerical example is presented to validate the primary convergence theorem.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"86 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03118-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an innovative inertial simultaneous cyclic iterative algorithm designed to address a range of mathematical problems within the realm of split equality variational inequalities. Specifically, the algorithm accommodates finite families of split equality variational inequality problems, infinite families of split equality variational inclusion problems, and multiple-sets split equality fixed point problems involving demicontractive operators in infinite-dimensional Hilbert spaces. The algorithm integrates well-established methods, including the cyclic method, the inertial method, the viscosity approximation method, and the projection method. We establish the strong convergence of this proposed algorithm, demonstrating its applicability in various scenarios and unifying disparate findings from existing literature. Additionally, a numerical example is presented to validate the primary convergence theorem.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.