Large order behavior near the AD point: the case of N = 2 , su(2), Nf = 2

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuan-Tsung Chan, H Itoyama, R Yoshioka
{"title":"Large order behavior near the AD point: the case of N = 2 , su(2), Nf = 2","authors":"Chuan-Tsung Chan, H Itoyama, R Yoshioka","doi":"10.1093/ptep/ptae034","DOIUrl":null,"url":null,"abstract":"A non-perturbative effect in κ (renormalized string coupling) obtained from the large order behavior in the vicinity of the prototypical Argyres-Douglas critical point of su(2), Nf = 2, $0\\mathcal {N} =2$ susy gauge theory can be studied in the GWW unitary matrix model with the log term: the one as the work done against the barrier of the effective potential by a single eigenvalue lifted from the sea and the other as a non-perturbative function contained in the solutions of the nonlinear differential equation PII that goes beyond the asymptotic series. The leading behaviors are of the form $\\exp (-\\frac{4}{3}\\frac{1}{\\kappa } \\, (1, \\left(\\frac{s}{K}\\right)^{\\frac{3}{2}} ))$ respectively. We make comments on their agreement.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A non-perturbative effect in κ (renormalized string coupling) obtained from the large order behavior in the vicinity of the prototypical Argyres-Douglas critical point of su(2), Nf = 2, $0\mathcal {N} =2$ susy gauge theory can be studied in the GWW unitary matrix model with the log term: the one as the work done against the barrier of the effective potential by a single eigenvalue lifted from the sea and the other as a non-perturbative function contained in the solutions of the nonlinear differential equation PII that goes beyond the asymptotic series. The leading behaviors are of the form $\exp (-\frac{4}{3}\frac{1}{\kappa } \, (1, \left(\frac{s}{K}\right)^{\frac{3}{2}} ))$ respectively. We make comments on their agreement.
AD 点附近的大阶行为:N = 2 , su(2), Nf = 2 的情况
从su(2), Nf = 2, $0\mathcal {N} =2$ susy规理论原型阿基里斯-道格拉斯临界点附近的大阶行为中获得的κ(重归一化弦耦合)中的非微扰效应,可以在带有对数项的GWW单元矩阵模型中进行研究:其中一个对数项是单个特征值从海中抬起对有效势垒所做的功,另一个对数项是非微扰函数,包含在非线性微分方程 PII 的解中,超出了渐近序列。前导行为的形式是 $\exp (-\frac{4}{3}\frac{1}{\kappa }\(1, \left(\frac{s}{K}\right)^{frac{3}{2}})))$ 分别是。我们对它们的一致性进行评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信