{"title":"A high-order B-spline collocation method for solving a class of nonlinear singular boundary value problems","authors":"Pradip Roul","doi":"10.1007/s10910-024-01590-z","DOIUrl":null,"url":null,"abstract":"<div><p>A high-order numerical scheme based on collocation of a quintic B-spline over finite element is proposed for the numerical solution of a class of nonlinear singular boundary value problems (SBVPs) arising in various physical models in engineering and applied sciences. Five illustrative examples are presented to illustrate the applicability and accuracy of the method. In order to justify the advantage of the proposed numerical scheme, the computed results are compared with the results obtained by two other fourth-order numerical methods, namely the finite difference method (Chawla et al. in BIT 28(1):88–97, 1988) and B-spline collocation method (Goh et al. in Comput Math Appl 64:115–120, 2012).</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01590-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A high-order numerical scheme based on collocation of a quintic B-spline over finite element is proposed for the numerical solution of a class of nonlinear singular boundary value problems (SBVPs) arising in various physical models in engineering and applied sciences. Five illustrative examples are presented to illustrate the applicability and accuracy of the method. In order to justify the advantage of the proposed numerical scheme, the computed results are compared with the results obtained by two other fourth-order numerical methods, namely the finite difference method (Chawla et al. in BIT 28(1):88–97, 1988) and B-spline collocation method (Goh et al. in Comput Math Appl 64:115–120, 2012).
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.