The Upper Semi-Weylness and Positive Nullity for Operator Matrices

IF 1 3区 数学 Q1 MATHEMATICS
Tengjie Zhang, Xiaohong Cao, Jiong Dong
{"title":"The Upper Semi-Weylness and Positive Nullity for Operator Matrices","authors":"Tengjie Zhang, Xiaohong Cao, Jiong Dong","doi":"10.1007/s40840-024-01654-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>H</i> and <i>K</i> be infinite dimensional separable complex Hilbert spaces and <i>B</i>(<i>K</i>, <i>H</i>) the algebra of all bounded linear operators from <i>K</i> into <i>H</i>. Let <span>\\(A\\in B(H)\\)</span> and <span>\\(B\\in B(K)\\)</span>. We denote by <span>\\(M_C\\)</span> the operator acting on <span>\\(H\\oplus K\\)</span> of the form <span>\\(M_C=\\left( \\begin{array}{cc}A&amp;{}C\\\\ 0&amp;{}B\\\\ \\end{array}\\right) \\)</span>. In this paper, we give necessary and sufficient conditions for <span>\\(M_C\\)</span> to be an upper semi-Fredholm operator with <span>\\(n(M_C)&gt;0\\)</span> and <span>\\(\\hbox {ind}(M_C)&lt;0\\)</span> for some left invertible operator <span>\\(C\\in B(K,H)\\)</span>. Meanwhile, we discover the relationship between <span>\\(n(M_C)\\)</span> and <i>n</i>(<i>A</i>) during the exploration. And we also describe all left invertible operators <span>\\(C\\in B(K,H)\\)</span> such that <span>\\(M_C\\)</span> is an upper semi-Fredholm operator with <span>\\(n(M_C)&gt;0\\)</span> and <span>\\(\\hbox {ind}(M_C)&lt;0\\)</span>.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"158 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01654-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H and K be infinite dimensional separable complex Hilbert spaces and B(KH) the algebra of all bounded linear operators from K into H. Let \(A\in B(H)\) and \(B\in B(K)\). We denote by \(M_C\) the operator acting on \(H\oplus K\) of the form \(M_C=\left( \begin{array}{cc}A&{}C\\ 0&{}B\\ \end{array}\right) \). In this paper, we give necessary and sufficient conditions for \(M_C\) to be an upper semi-Fredholm operator with \(n(M_C)>0\) and \(\hbox {ind}(M_C)<0\) for some left invertible operator \(C\in B(K,H)\). Meanwhile, we discover the relationship between \(n(M_C)\) and n(A) during the exploration. And we also describe all left invertible operators \(C\in B(K,H)\) such that \(M_C\) is an upper semi-Fredholm operator with \(n(M_C)>0\) and \(\hbox {ind}(M_C)<0\).

算子矩阵的上半完备性和正无效性
让 H 和 K 是无限维的可分离复希尔伯特空间,B(K, H) 是所有从 K 到 H 的有界线性算子的代数。我们用 \(M_C\) 表示作用于 \(H\oplus K\) 的形式为 \(M_C=\left( \begin{array}{cc}A&{}C\\0&{}B\\\end{array}\right) 的算子。)在本文中,我们给出了对于某个左可逆算子(C\in B(K,H))来说,\(M_C\)是上半弗来霍尔算子的必要条件和充分条件,即\(n(M_C)>0\)和\(\hbox {ind}(M_C)<0\)。同时,我们在探索过程中发现了 n(M_C)和 n(A)之间的关系。我们还描述了所有的左可逆算子(C\in B(K,H)),使得\(M_C\)是一个上半弗里德霍姆算子,具有\(n(M_C)>0\)和\(\hbox {ind}(M_C)<0\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信