Approximation Algorithms for the MAXSPACE Advertisement Problem

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Lehilton L. C. Pedrosa, Mauro R. C. da Silva, Rafael C. S. Schouery
{"title":"Approximation Algorithms for the MAXSPACE Advertisement Problem","authors":"Lehilton L. C. Pedrosa, Mauro R. C. da Silva, Rafael C. S. Schouery","doi":"10.1007/s00224-024-10170-2","DOIUrl":null,"url":null,"abstract":"<p>In MAXSPACE, given a set of ads <span>\\(\\mathcal {A}\\)</span>, one wants to schedule a subset <span>\\({\\mathcal {A}'\\subseteq \\mathcal {A}}\\)</span> into <i>K</i> slots <span>\\({B_1, \\dots , B_K}\\)</span> of size <i>L</i>. Each ad <span>\\({A_i \\in \\mathcal {A}}\\)</span> has a <i>size</i> <span>\\(s_i\\)</span> and a <i>frequency</i> <span>\\(w_i\\)</span>. A schedule is feasible if the total size of ads in any slot is at most <i>L</i>, and each ad <span>\\({A_i \\in \\mathcal {A}'}\\)</span> appears in exactly <span>\\(w_i\\)</span> slots and at most once per slot. The goal is to find a feasible schedule that maximizes the sum of the space occupied by all slots. We consider a generalization called MAXSPACE-R for which an ad <span>\\(A_i\\)</span> also has a release date <span>\\(r_i\\)</span> and may only appear in a slot <span>\\(B_j\\)</span> if <span>\\({j \\ge r_i}\\)</span>. For this variant, we give a 1/9-approximation algorithm. Furthermore, we consider MAXSPACE-RDV for which an ad <span>\\(A_i\\)</span> also has a deadline <span>\\(d_i\\)</span> (and may only appear in a slot <span>\\(B_j\\)</span> with <span>\\(r_i \\le j \\le d_i\\)</span>), and a value <span>\\(v_i\\)</span> that is the gain of each assigned copy of <span>\\(A_i\\)</span> (which can be unrelated to <span>\\(s_i\\)</span>). We present a polynomial-time approximation scheme for this problem when <i>K</i> is bounded by a constant. This is the best factor one can expect since MAXSPACE is strongly NP-hard, even if <span>\\(K = 2\\)</span>.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"52 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00224-024-10170-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In MAXSPACE, given a set of ads \(\mathcal {A}\), one wants to schedule a subset \({\mathcal {A}'\subseteq \mathcal {A}}\) into K slots \({B_1, \dots , B_K}\) of size L. Each ad \({A_i \in \mathcal {A}}\) has a size \(s_i\) and a frequency \(w_i\). A schedule is feasible if the total size of ads in any slot is at most L, and each ad \({A_i \in \mathcal {A}'}\) appears in exactly \(w_i\) slots and at most once per slot. The goal is to find a feasible schedule that maximizes the sum of the space occupied by all slots. We consider a generalization called MAXSPACE-R for which an ad \(A_i\) also has a release date \(r_i\) and may only appear in a slot \(B_j\) if \({j \ge r_i}\). For this variant, we give a 1/9-approximation algorithm. Furthermore, we consider MAXSPACE-RDV for which an ad \(A_i\) also has a deadline \(d_i\) (and may only appear in a slot \(B_j\) with \(r_i \le j \le d_i\)), and a value \(v_i\) that is the gain of each assigned copy of \(A_i\) (which can be unrelated to \(s_i\)). We present a polynomial-time approximation scheme for this problem when K is bounded by a constant. This is the best factor one can expect since MAXSPACE is strongly NP-hard, even if \(K = 2\).

Abstract Image

MAXSPACE 广告问题的近似算法
在 MAXSPACE 中,给定一组广告(\mathcal {A}),我们需要将一个子集({\mathcal {A}'\subseteq \mathcal {A}})安排到大小为 L 的 K 个插槽({B_1, \dots , B_K})中。每个广告({A_i in \mathcal {A}})都有一个大小(s_i)和频率(w_i)。如果任何时段中广告的总大小最多为 L,并且每个广告 \({A_i \in \mathcal {A}'}\) 恰好出现在 \(w_i\) 个时段中,并且每个时段最多出现一次,那么这个计划就是可行的。我们的目标是找到一个可行的时间表,最大化所有时隙所占空间的总和。我们考虑了一种被称为 MAXSPACE-R 的概括,在这种概括中,广告 \(A_i\) 也有一个发布日期 \(r_i\),并且只有在 \({j \ge r_i}\) 的情况下才能出现在插槽 \(B_j\)中。对于这个变量,我们给出了一个 1/9 近似算法。此外,我们还考虑了MAXSPACE-RDV,对于MAXSPACE-RDV来说,一个广告(A_i\ )也有一个截止日期(d_i\ )(并且只能出现在有(r_i \le j \le d_i\)的插槽(B_j\ )中),还有一个值(v_i\ ),它是(A_i\ )的每个分配副本的增益(可以与(s_i\ )无关)。当 K 由常数限定时,我们提出了一个多项式时间近似方案。由于 MAXSPACE 是强 NP 难的,即使 \(K = 2\) 也是如此,所以这是我们所能期待的最好的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信