Ting Zhang, Mengkai Yin, Hualin Bai, Anqin Zhang, Yi Du
{"title":"Conditional stochastic simulation of fluvial reservoirs using multi-scale concurrent generative adversarial networks","authors":"Ting Zhang, Mengkai Yin, Hualin Bai, Anqin Zhang, Yi Du","doi":"10.1007/s10596-024-10279-w","DOIUrl":null,"url":null,"abstract":"<p>To accurately grasp the comprehensive geological features of fluvial reservoirs, it is necessary to exploit a robust modelling approach to visualize and reproduce the realistic spatial distribution that exhibits apparent and implicit depositional trends of fluvial regions. The traditional geostatistical modelling methods using stochastic modelling fail to capture the complex features of geological reservoirs and therefore cannot reflect satisfactory realistic patterns. Generative adversarial network (GAN), as one of the mainstream generative models of deep learning, performs well in unsupervised learning tasks. The concurrent single image GAN (ConSinGAN) is one of the variants of GAN. Based on ConSinGAN, conditional concurrent single image GAN (CCSGAN) is proposed in this paper to perform conditional simulation of fluvial reservoirs, through which the output of the model can be constrained by conditional data. The results show that ConSinGAN, with the introduction of conditional data, not only preserves the model and parameters for future use but also improves the quality of the simulation results compared to other modeling methods.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"70 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10279-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To accurately grasp the comprehensive geological features of fluvial reservoirs, it is necessary to exploit a robust modelling approach to visualize and reproduce the realistic spatial distribution that exhibits apparent and implicit depositional trends of fluvial regions. The traditional geostatistical modelling methods using stochastic modelling fail to capture the complex features of geological reservoirs and therefore cannot reflect satisfactory realistic patterns. Generative adversarial network (GAN), as one of the mainstream generative models of deep learning, performs well in unsupervised learning tasks. The concurrent single image GAN (ConSinGAN) is one of the variants of GAN. Based on ConSinGAN, conditional concurrent single image GAN (CCSGAN) is proposed in this paper to perform conditional simulation of fluvial reservoirs, through which the output of the model can be constrained by conditional data. The results show that ConSinGAN, with the introduction of conditional data, not only preserves the model and parameters for future use but also improves the quality of the simulation results compared to other modeling methods.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.