An Optimal Solution to Infinite Horizon Nonlinear Control Problems: Part II

Mohamed Naveed Gul Mohamed, Aayushman Sharma, Raman Goyal, Suman Chakravorty
{"title":"An Optimal Solution to Infinite Horizon Nonlinear Control Problems: Part II","authors":"Mohamed Naveed Gul Mohamed, Aayushman Sharma, Raman Goyal, Suman Chakravorty","doi":"arxiv-2403.16979","DOIUrl":null,"url":null,"abstract":"This paper considers the infinite horizon optimal control problem for\nnonlinear systems. Under the condition of nonlinear controllability of the\nsystem to any terminal set containing the origin and forward invariance of the\nterminal set, we establish a regularized solution approach consisting of a\n``finite free final time\" optimal transfer problem to the terminal set which\nrenders the set globally asymptotically stable. Further, we show that the\napproximations converge to the optimal infinite horizon cost as the size of the\nterminal set decreases to zero. We also perform the analysis for the discounted\nproblem and show that the terminal set is asymptotically stable only for a\nsubset of the state space and not globally. The theory is empirically evaluated\non various nonholonomic robotic systems to show that the cost of our\napproximate problem converges and the transfer time into the terminal set is\ndependent on the initial state of the system, necessitating the free final time\nformulation.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the infinite horizon optimal control problem for nonlinear systems. Under the condition of nonlinear controllability of the system to any terminal set containing the origin and forward invariance of the terminal set, we establish a regularized solution approach consisting of a ``finite free final time" optimal transfer problem to the terminal set which renders the set globally asymptotically stable. Further, we show that the approximations converge to the optimal infinite horizon cost as the size of the terminal set decreases to zero. We also perform the analysis for the discounted problem and show that the terminal set is asymptotically stable only for a subset of the state space and not globally. The theory is empirically evaluated on various nonholonomic robotic systems to show that the cost of our approximate problem converges and the transfer time into the terminal set is dependent on the initial state of the system, necessitating the free final time formulation.
无限视界非线性控制问题的最优解:第二部分
本文研究了非线性系统的无限视界最优控制问题。在系统对包含原点的任意终端集的非线性可控性和终端集的前向不变性的条件下,我们建立了一种正则化求解方法,包括对终端集的 "无限自由最终时间 "最优转移问题,它使终端集在全局上渐近稳定。此外,我们还证明,当终端集的规模减小到零时,近似值会收敛到最优无限期成本。我们还对贴现问题进行了分析,结果表明,终点集只有在状态空间的子集上才是渐近稳定的,而不是全局稳定的。我们在各种非全局机器人系统上对这一理论进行了实证评估,结果表明,我们的近似问题的成本收敛和进入终点集的转移时间取决于系统的初始状态,因此有必要采用自由的最终时间公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信