On iterative roots of injective functions

Pub Date : 2024-03-26 DOI:10.1007/s00010-024-01047-3
Bojan Bašić, Stefan Hačko
{"title":"On iterative roots of injective functions","authors":"Bojan Bašić,&nbsp;Stefan Hačko","doi":"10.1007/s00010-024-01047-3","DOIUrl":null,"url":null,"abstract":"<div><p>In 1951 Łojasiewicz found a necessary and sufficient condition for the existence of a <i>q</i>-iterative root of an arbitrary bijective function <i>g</i> for any <span>\\(q\\ge 2\\)</span>. In this article we extend this result to the injective case. More precisely, a necessary and sufficient condition for the existence of an iterative root of an injective function is proved, and in the case of existence, the characterization and enumeration of all iterative roots are given. Furthermore, we devise a construction by which all iterative roots of an injective function can be constructed (provided that the considered function has at least one iterative root). As an illustration, we apply the developed theory to several results from the literature to obtain somewhat more elegant and shorter proofs of those results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01047-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1951 Łojasiewicz found a necessary and sufficient condition for the existence of a q-iterative root of an arbitrary bijective function g for any \(q\ge 2\). In this article we extend this result to the injective case. More precisely, a necessary and sufficient condition for the existence of an iterative root of an injective function is proved, and in the case of existence, the characterization and enumeration of all iterative roots are given. Furthermore, we devise a construction by which all iterative roots of an injective function can be constructed (provided that the considered function has at least one iterative root). As an illustration, we apply the developed theory to several results from the literature to obtain somewhat more elegant and shorter proofs of those results.

Abstract Image

分享
查看原文
论注入函数的迭代根
摘要 1951 年,Łojasiewicz 发现了任意双射函数 g 的任意 \(q\ge 2\) 的 q-iterative 根存在的必要条件和充分条件。在本文中,我们将这一结果扩展到注入情况。更确切地说,我们证明了注入函数迭代根存在的必要条件和充分条件,并给出了在存在的情况下所有迭代根的特征和枚举。此外,我们还设计了一种构造,通过这种构造可以构造出注入函数的所有迭代根(前提是所考虑的函数至少有一个迭代根)。作为例证,我们将所建立的理论应用于文献中的几个结果,从而得到这些结果的更优雅、更简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信