Monigleicia Alcalde Orioli, Weiner Gustavo Silva Costa, Tainá Silva Sá Britto, Jacqueline Cristina Patzsch, Jair de Jesús Arrieta Baldovino, Ronaldo Luis dos Santos Izzo
{"title":"Effect of the Incorporation of Recycled Aggregate from Construction and Demolition Waste on the Mechanical Strength of Silty-Cement Soil","authors":"Monigleicia Alcalde Orioli, Weiner Gustavo Silva Costa, Tainá Silva Sá Britto, Jacqueline Cristina Patzsch, Jair de Jesús Arrieta Baldovino, Ronaldo Luis dos Santos Izzo","doi":"10.1007/s40999-024-00951-8","DOIUrl":null,"url":null,"abstract":"<p>The present study aims to assess the effect of using recycled aggregates (RA) derived from construction and demolition waste (CDW) on the development of the unconfined compressive strength (UCS) of a silty-cement soil from the Guabirotuba Formation, located in the southern region of Brazil. Was considered the influence of various parameters, including RA content, compaction effort, maximum dry specific mass, and porosity/volume cement content (η/C<i>iv</i>). RA contents of 10%, 20%, and 30%, combined with 5% cement by dry soil weight, are studied at curing times of 0, 7, 14, and 28 days, using standard, intermediate, and modified compaction efforts. The results reveal that the addition of RA leads to an increase in the maximum dry specific mass, directly correlating with an increase in the rate of compressive strength gain over time. In the case of the modified compaction effort, the UCS value for the mixture with 30% RA at 28 days of curing reaches 2318 kPa, which is 35% higher compared to the mixture without RA, which has an RCS value of 1711 kPa. Equations establishing a relationship between η/C<i>iv</i> and UCS show that smaller η/C<i>iv</i> values result in greater UCS. Furthermore, a correlation between η/C<i>iv</i> and RA content with UCS suggests that η/C<i>iv</i> has a stronger influence on UCS than RA content. Lastly, Scanning Electron Microscopy (SEM) indicates that incorporating 30% RA reduces the number of pores as well as their size, which enhances the soil structure and its increases stability, resulting in a more compact structure.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00951-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to assess the effect of using recycled aggregates (RA) derived from construction and demolition waste (CDW) on the development of the unconfined compressive strength (UCS) of a silty-cement soil from the Guabirotuba Formation, located in the southern region of Brazil. Was considered the influence of various parameters, including RA content, compaction effort, maximum dry specific mass, and porosity/volume cement content (η/Civ). RA contents of 10%, 20%, and 30%, combined with 5% cement by dry soil weight, are studied at curing times of 0, 7, 14, and 28 days, using standard, intermediate, and modified compaction efforts. The results reveal that the addition of RA leads to an increase in the maximum dry specific mass, directly correlating with an increase in the rate of compressive strength gain over time. In the case of the modified compaction effort, the UCS value for the mixture with 30% RA at 28 days of curing reaches 2318 kPa, which is 35% higher compared to the mixture without RA, which has an RCS value of 1711 kPa. Equations establishing a relationship between η/Civ and UCS show that smaller η/Civ values result in greater UCS. Furthermore, a correlation between η/Civ and RA content with UCS suggests that η/Civ has a stronger influence on UCS than RA content. Lastly, Scanning Electron Microscopy (SEM) indicates that incorporating 30% RA reduces the number of pores as well as their size, which enhances the soil structure and its increases stability, resulting in a more compact structure.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.