{"title":"Micromotors based on mesoporous silica tubes for thrombus therapy","authors":"Yuning Sun, Junfeng Zhu, Boqian Zhu, Jia Huang","doi":"10.1680/jbibn.23.00005","DOIUrl":null,"url":null,"abstract":"To solve the problems of traditional drug carriers such as their single structure and lack of graded release, this work designs and synthesizes a kind of microporous–mesoporous silica tube (MST) with a macroporous and mesoporous structure. Then, manganese dioxide (MnO<sub>2</sub>) nanoparticles prepared using the hydrothermal method are embedded in the macropores to form an MST/Mn micromotor, which is then loaded with heparin and urokinase for thrombolytic therapy. The motion behavior of the micromotor is also investigated. Both static and dynamic thrombolytic therapy are detected, and the results indicate that a better thrombolytic effect can be observed on the MST/manganese micromotor with a motion ability compared with the samples without a motion ability. This research is expected to provide ideas for the design of more effective thrombus treatment agents.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.23.00005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problems of traditional drug carriers such as their single structure and lack of graded release, this work designs and synthesizes a kind of microporous–mesoporous silica tube (MST) with a macroporous and mesoporous structure. Then, manganese dioxide (MnO2) nanoparticles prepared using the hydrothermal method are embedded in the macropores to form an MST/Mn micromotor, which is then loaded with heparin and urokinase for thrombolytic therapy. The motion behavior of the micromotor is also investigated. Both static and dynamic thrombolytic therapy are detected, and the results indicate that a better thrombolytic effect can be observed on the MST/manganese micromotor with a motion ability compared with the samples without a motion ability. This research is expected to provide ideas for the design of more effective thrombus treatment agents.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.