Asymptotic Behavior of Point Processes of Exceeding the High Levels of Gaussian Stationary Sequence

IF 0.2 Q4 MATHEMATICS
V. I. Piterbarg
{"title":"Asymptotic Behavior of Point Processes of Exceeding the High Levels of Gaussian Stationary Sequence","authors":"V. I. Piterbarg","doi":"10.3103/s0027132223060050","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper studies the asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond a level tending to infinity more slowly than in the Poisson limit theorem for the number of exits. Convergence in variation of such point processes to a marked Poisson process is proved. The results of Yu.V. Prokhorov on the best approximation of the Bernoulli distribution by a mixture of Gaussian and Poisson distributions are applied. A.N. Kolmogorov proposed this problem in the early 1950s.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223060050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper studies the asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond a level tending to infinity more slowly than in the Poisson limit theorem for the number of exits. Convergence in variation of such point processes to a marked Poisson process is proved. The results of Yu.V. Prokhorov on the best approximation of the Bernoulli distribution by a mixture of Gaussian and Poisson distributions are applied. A.N. Kolmogorov proposed this problem in the early 1950s.

超过高斯静态序列高水平的点过程的渐近行为
摘要 本文研究了高斯静止序列的出口点过程的渐近行为,其超越水平趋向无穷大的速度比出口数量的泊松极限定理更慢。证明了这种点过程在变化中收敛于有标记的泊松过程。应用了 Yu.V. Prokhorov 关于用高斯分布和泊松分布的混合物对伯努利分布进行最佳逼近的结果。科尔莫戈罗夫(A.N. Kolmogorov)在二十世纪五十年代初提出了这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信