{"title":"An enhanced deep learning-based disease detection model in wireless body area network with energy efficient routing protocol","authors":"B. S. Liya, R. Krishnamoorthy, S. Arun","doi":"10.1007/s11276-024-03717-1","DOIUrl":null,"url":null,"abstract":"<p>The group of connected small “Bio-sensor nodes (BSNs)” is employed in various parts of the human body that is called “Wireless body area networks (WBAN)”. It helps to recognize health-related data and to monitor the readings of blood pressure, “Electro-Cardiogram (ECG)”, heartbeat rate, “Electro-Myography (EMG)”, and glucose levels in the blood of the human body to know the real-time health. Many applications and research areas use the WBAN, like sports, social welfare, medical field, and entertainment. For WBAN, the major backbone is the BSNs, generally known as “Sensor nodes (SNs)”. Based on the small size of the SNs, they have basic resources. High energy is consumed when there is heavy data transmission. When all the energy is drained, that leads to the death of some SN. Routing is the data transfer method from the main source to the sink nodes. The minimum number of SNs is the efficient routing in the data transmission process, resulting in maximum energy consumption. Hence, an energy-efficient routing scheme is implemented with heuristic approaches to conserve more energy in the WBAN. To perform routing effectively, the Cluster Head (CH) needs to be selected initially. In this work, the optimal selection of the CH is carried out using a hybrid Red piranha and egret swarm algorithm (RPESA). Once the CH is optimally selected, the optimal routing is implemented using the RPESA algorithm. The data transmitted using this optimal routing scheme is then utilized for disease diagnosis using an Adaptive dilated cascaded recurrent neural network (ADC-RNN). The parameters in the ADC-RNN technique are optimally selected using the same RPESA algorithm. The classified disease outcome was obtained from ADC-RNN. The suggested heuristic-based energy-efficient routing approach for WBAN and the deep learning-based disease detection model was implemented, and its function was validated by differentiating it with other existing schemes.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"233 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03717-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The group of connected small “Bio-sensor nodes (BSNs)” is employed in various parts of the human body that is called “Wireless body area networks (WBAN)”. It helps to recognize health-related data and to monitor the readings of blood pressure, “Electro-Cardiogram (ECG)”, heartbeat rate, “Electro-Myography (EMG)”, and glucose levels in the blood of the human body to know the real-time health. Many applications and research areas use the WBAN, like sports, social welfare, medical field, and entertainment. For WBAN, the major backbone is the BSNs, generally known as “Sensor nodes (SNs)”. Based on the small size of the SNs, they have basic resources. High energy is consumed when there is heavy data transmission. When all the energy is drained, that leads to the death of some SN. Routing is the data transfer method from the main source to the sink nodes. The minimum number of SNs is the efficient routing in the data transmission process, resulting in maximum energy consumption. Hence, an energy-efficient routing scheme is implemented with heuristic approaches to conserve more energy in the WBAN. To perform routing effectively, the Cluster Head (CH) needs to be selected initially. In this work, the optimal selection of the CH is carried out using a hybrid Red piranha and egret swarm algorithm (RPESA). Once the CH is optimally selected, the optimal routing is implemented using the RPESA algorithm. The data transmitted using this optimal routing scheme is then utilized for disease diagnosis using an Adaptive dilated cascaded recurrent neural network (ADC-RNN). The parameters in the ADC-RNN technique are optimally selected using the same RPESA algorithm. The classified disease outcome was obtained from ADC-RNN. The suggested heuristic-based energy-efficient routing approach for WBAN and the deep learning-based disease detection model was implemented, and its function was validated by differentiating it with other existing schemes.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.