Limiting behaviors of constrained minimizers for the mass subcritical fractional NLS equations

IF 1.4 3区 数学 Q1 MATHEMATICS
Jie Yang, Haibo Chen, Lintao Liu
{"title":"Limiting behaviors of constrained minimizers for the mass subcritical fractional NLS equations","authors":"Jie Yang,&nbsp;Haibo Chen,&nbsp;Lintao Liu","doi":"10.1007/s13324-024-00899-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the asymptotic properties of solutions for the constrained minimization problems. </p><div><div><span>$$\\begin{aligned} d_{b_p}(p):=\\inf _{\\{u\\in H^s_V({\\mathbb {R}}^2): \\int _{{\\mathbb {R}}^2}|u|^2dx=1\\}}I_{p,b_p}(u), \\end{aligned}$$</span></div></div><p>where <span>\\(s\\in (\\frac{1}{2},1),\\)</span> <span>\\(p\\in (0, 2s)\\)</span>, <span>\\(b_p&gt;0\\)</span> and </p><div><div><span>$$\\begin{aligned} I_{p,b_p}(u){:=}\\frac{1}{2}\\int _{{\\mathbb {R}}^2}\\left( |(-\\Delta )^{\\frac{s}{2}}u|^2{+}V(x)|u|^2\\right) dx{-}\\frac{b_p}{p+2}\\int _{{\\mathbb {R}}^2}|u|^{p+2}dx,\\quad u\\in H^s_V({\\mathbb {R}}^2). \\end{aligned}$$</span></div></div><p>First, when <span>\\(\\lim _{p\\nearrow 2s}b_p=b&lt;b^*\\)</span>, the set of minimizers of <span>\\(d_{b_p}(p)\\)</span> is compact in a suitable space as <span>\\(p\\nearrow 2s\\)</span>. In addition, when <span>\\(\\lim _{p\\nearrow 2s}b_p=b\\ge b^*\\)</span>, by developing suitable trial functions for some fine energy estimates, we prove that all minimizers must blow up and give decay properties of minimizers.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00899-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the asymptotic properties of solutions for the constrained minimization problems.

$$\begin{aligned} d_{b_p}(p):=\inf _{\{u\in H^s_V({\mathbb {R}}^2): \int _{{\mathbb {R}}^2}|u|^2dx=1\}}I_{p,b_p}(u), \end{aligned}$$

where \(s\in (\frac{1}{2},1),\) \(p\in (0, 2s)\), \(b_p>0\) and

$$\begin{aligned} I_{p,b_p}(u){:=}\frac{1}{2}\int _{{\mathbb {R}}^2}\left( |(-\Delta )^{\frac{s}{2}}u|^2{+}V(x)|u|^2\right) dx{-}\frac{b_p}{p+2}\int _{{\mathbb {R}}^2}|u|^{p+2}dx,\quad u\in H^s_V({\mathbb {R}}^2). \end{aligned}$$

First, when \(\lim _{p\nearrow 2s}b_p=b<b^*\), the set of minimizers of \(d_{b_p}(p)\) is compact in a suitable space as \(p\nearrow 2s\). In addition, when \(\lim _{p\nearrow 2s}b_p=b\ge b^*\), by developing suitable trial functions for some fine energy estimates, we prove that all minimizers must blow up and give decay properties of minimizers.

质量次临界分数 NLS方程受约束最小化的极限行为
本文研究了受约束最小化问题解的渐近特性。$$\begin{aligned} d_{b_p}(p):=\inf _\{u\in H^s_V({\mathbb {R}}^2):\int _{{mathbb {R}}^2}|u|^2dx=1\}}I_{p,b_p}(u), \end{aligned}$$ 其中 \(s\in (\frac{1}{2},1),\)\(p\in (0, 2s)\),\(b_p>0\) and $$$\begin{aligned}I_{p,b_p}(u){:=}\frac{1}{2}\int _{{\mathbb {R}}^2}}\left( |(-\Delta )^{\frac{s}{2}}}u|^2{+}V(x)|u|^2\right) dx{-}\frac{b_p}{p+2}\int _{{\mathbb {R}}^2}|u|^{p+2}dx,\quad u\in H^s_V({\mathbb {R}}^2).\end{aligned}$$First, when \(\lim _{p\nearrow 2s}b_p=b<b^*\), the set of minimizers of \(d_{b_p}(p)\) is compact in a suitable space as \(p/nearrow 2s\)。此外,当 \(\lim _{p\nearrow 2s}b_p=b\ge b^*\)时,通过为一些精细的能量估计建立合适的试函数,我们证明了所有的最小值都必须炸毁,并给出了最小值的衰变特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信