Birman–Hilden Bundles. II

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020101
A. V. Malyutin
{"title":"Birman–Hilden Bundles. II","authors":"A. V. Malyutin","doi":"10.1134/s0037446624020101","DOIUrl":null,"url":null,"abstract":"<p>We study the structure of self-homeomorphism groups of fibered manifolds.\nA fibered topological space\nis a Birman–Hilden space\nwhenever in each isotopic pair of its fiber-preserving\n(taking each fiber to a fiber)\nself-homeomorphisms\nthe homeomorphisms are also fiber-isotopic\n(isotopic through fiber-preserving homeomorphisms).\nWe prove in particular that\nthe Birman–Hilden class contains\nall compact connected locally trivial surface bundles over the circle,\nincluding nonorientable ones and those with nonempty boundary,\nas well as all closed orientable Haken 3-manifold bundles over the circle,\nincluding nonorientable ones.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the structure of self-homeomorphism groups of fibered manifolds. A fibered topological space is a Birman–Hilden space whenever in each isotopic pair of its fiber-preserving (taking each fiber to a fiber) self-homeomorphisms the homeomorphisms are also fiber-isotopic (isotopic through fiber-preserving homeomorphisms). We prove in particular that the Birman–Hilden class contains all compact connected locally trivial surface bundles over the circle, including nonorientable ones and those with nonempty boundary, as well as all closed orientable Haken 3-manifold bundles over the circle, including nonorientable ones.

分享
查看原文
比尔曼-希尔登包。二
我们研究了纤维流形的自同构群结构。当一个纤维拓扑空间的每一对保纤(把每条纤维看作一条纤维)自同构中的同构也是纤维同构(通过保纤同构而同构)时,这个空间就是比尔曼-希尔登空间(Birman-Hilden space)。我们特别证明了比尔曼-希尔登类包含圆上所有紧凑相连的局部三维曲面束,包括不可定向的曲面束和边界非空的曲面束,以及圆上所有封闭可定向的哈肯三芒星曲面束,包括不可定向的曲面束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信