On the Relation between Denjoy–Khintchine and $ \operatorname{HK}_{r} $ -Integrals

Pub Date : 2024-03-01 DOI:10.1134/s0037446624020162
{"title":"On the Relation between Denjoy–Khintchine and $ \\operatorname{HK}_{r} $ -Integrals","authors":"","doi":"10.1134/s0037446624020162","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We locate Musial and Sagher’s concept of <span> <span>\\( \\operatorname{HK}_{r} \\)</span> </span>-integration within the approximate Henstock–Kurzweil integral theory. If we restrict the <span> <span>\\( \\operatorname{HK}_{r} \\)</span> </span>-integral by the requirement that the indefinite <span> <span>\\( \\operatorname{HK}_{r} \\)</span> </span>-integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We locate Musial and Sagher’s concept of \( \operatorname{HK}_{r} \) -integration within the approximate Henstock–Kurzweil integral theory. If we restrict the \( \operatorname{HK}_{r} \) -integral by the requirement that the indefinite \( \operatorname{HK}_{r} \) -integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.

分享
查看原文
论丹乔伊-欣钦因与 $ \operatorname{HK}_{r} $ - 积分的关系
Abstract 我们将 Musial 和 Sagher 的 \( \operatorname{HK}_{r} \) -integration 概念置于近似 Henstock-Kurzweil 积分理论中。如果我们限制 \( \operatorname{HK}_{r} \) -积分,要求不确定的 \( \operatorname{HK}_{r} \) -积分是连续的,那么它就会包含在经典的登乔伊-金廷积分中。我们提供了一个直接论证,证明这种包含是适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信