Novikov $ ��_{2} $ -Graded Algebras with an Associative 0-Component

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020150
A. S. Panasenko, V. N. Zhelyabin
{"title":"Novikov $ ��_{2} $ -Graded Algebras with an Associative 0-Component","authors":"A. S. Panasenko, V. N. Zhelyabin","doi":"10.1134/s0037446624020150","DOIUrl":null,"url":null,"abstract":"<p>In 1974 Kharchenko proved that if a <span>\\( 0 \\)</span>-component of an <span>\\( n \\)</span>-graded associative algebra is PI then this algebra is PI.\nIn the Novikov algebras of characteristic 0 the existence of a polynomial identity is equivalent to the solvability of the commutator ideal.\nWe study a <span>\\( 𝕑_{2} \\)</span>-graded Novikov algebra <span>\\( N=A+M \\)</span> and prove that if the characteristic of the basic field is not 2 or 3\nand its 0-component <span>\\( A \\)</span> is associative or Lie-nilpotent of index 3 then\nthe commutator ideal <span>\\( [N,N] \\)</span> is solvable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1974 Kharchenko proved that if a \( 0 \)-component of an \( n \)-graded associative algebra is PI then this algebra is PI. In the Novikov algebras of characteristic 0 the existence of a polynomial identity is equivalent to the solvability of the commutator ideal. We study a \( 𝕑_{2} \)-graded Novikov algebra \( N=A+M \) and prove that if the characteristic of the basic field is not 2 or 3 and its 0-component \( A \) is associative or Lie-nilpotent of index 3 then the commutator ideal \( [N,N] \) is solvable.

分享
查看原文
具有关联0分量的诺维科夫级代数
1974年,哈尔琴科证明,如果一个\( 0 \)级联代数的\( n \)分量是PI,那么这个代数就是PI。在特征为0的诺维科夫代数中,多项式同一性的存在等价于换元理想的可解性。我们研究了一个 \( 𝕑_{2} \)-等级的诺维科夫代数 \( N=A+M \),并证明了如果基本域的特征不是 2 或 3,并且它的 0 分量 \( A \)是指数为 3 的联立或烈偶,那么换元理想 \( [N,N] \)是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信