Lattice points in slices of prisms

Luis Ferroni, Daniel McGinnis
{"title":"Lattice points in slices of prisms","authors":"Luis Ferroni, Daniel McGinnis","doi":"10.4153/s0008414x24000233","DOIUrl":null,"url":null,"abstract":"<p>We conduct a systematic study of the Ehrhart theory of certain slices of rectangular prisms. Our polytopes are generalizations of the hypersimplex and are contained in the larger class of polypositroids introduced by Lam and Postnikov; moreover, they coincide with polymatroids satisfying the strong exchange property up to an affinity. We give a combinatorial formula for all the Ehrhart coefficients in terms of the number of weighted permutations satisfying certain compatibility properties. This result proves that all these polytopes are Ehrhart positive. Additionally, via an extension of a result by Early and Kim, we give a combinatorial interpretation for all the coefficients of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240323085929717-0561:S0008414X24000233:S0008414X24000233_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$h^*$</span></span></img></span></span>-polynomial. All of our results provide a combinatorial understanding of the Hilbert functions and the <span>h</span>-vectors of all algebras of Veronese type, a problem that had remained elusive up to this point. A variety of applications are discussed, including expressions for the volumes of these slices of prisms as weighted combinations of Eulerian numbers; some extensions of Laplace’s result on the combinatorial interpretation of the volume of the hypersimplex; a multivariate generalization of the flag Eulerian numbers and refinements; and a short proof of the Ehrhart positivity of the independence polytope of all uniform matroids.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We conduct a systematic study of the Ehrhart theory of certain slices of rectangular prisms. Our polytopes are generalizations of the hypersimplex and are contained in the larger class of polypositroids introduced by Lam and Postnikov; moreover, they coincide with polymatroids satisfying the strong exchange property up to an affinity. We give a combinatorial formula for all the Ehrhart coefficients in terms of the number of weighted permutations satisfying certain compatibility properties. This result proves that all these polytopes are Ehrhart positive. Additionally, via an extension of a result by Early and Kim, we give a combinatorial interpretation for all the coefficients of the Abstract Image$h^*$-polynomial. All of our results provide a combinatorial understanding of the Hilbert functions and the h-vectors of all algebras of Veronese type, a problem that had remained elusive up to this point. A variety of applications are discussed, including expressions for the volumes of these slices of prisms as weighted combinations of Eulerian numbers; some extensions of Laplace’s result on the combinatorial interpretation of the volume of the hypersimplex; a multivariate generalization of the flag Eulerian numbers and refinements; and a short proof of the Ehrhart positivity of the independence polytope of all uniform matroids.

棱柱切片中的晶格点
我们对某些矩形棱柱切片的艾尔哈特理论进行了系统研究。我们的多面体是超复数的广义化,包含在拉姆和波斯特尼科夫提出的更大的多正多面体类别中;此外,它们与满足强交换特性的多正多面体重合,直到亲和性。我们给出了所有埃尔哈特系数的组合公式,即满足某些相容性的加权排列的数量。这一结果证明了所有这些多面体都是艾哈特正多面体。此外,通过扩展厄尔利和金的一个结果,我们给出了 $h^*$ 多项式所有系数的组合解释。我们的所有结果都提供了对希尔伯特函数和所有维罗纳型代数代数的 h 向量的组合理解,而这一问题到目前为止仍然难以解决。我们讨论了各种应用,包括作为欧拉数加权组合的这些棱镜切片的体积表达式;拉普拉斯关于超复数体积的组合解释结果的一些扩展;旗欧拉数的多变量广义化和细化;以及所有均匀矩阵的独立性多面体的埃尔哈特正性的简短证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信