Group invertibility of the sum in rings and its applications

Pub Date : 2024-03-25 DOI:10.1515/gmj-2024-2010
Huanyin Chen, Dayong Liu, Marjan Sheibani
{"title":"Group invertibility of the sum in rings and its applications","authors":"Huanyin Chen, Dayong Liu, Marjan Sheibani","doi":"10.1515/gmj-2024-2010","DOIUrl":null,"url":null,"abstract":"We present necessary and sufficient conditions under which the sum of two group invertible elements in a ring is group invertible. As applications, we establish the existence of group inverses of certain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>×</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2010_eq_0193.png\" /> <jats:tex-math>{2\\times 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> block-operator matrices over a Banach space. These generalize the known results, e.g., Zhou, Chen and Zhu (<jats:italic>Comm. Algebra</jats:italic> 48 (2020), 676–690) and Benítez, Liu and Zhu (<jats:italic>Linear Multilinear Algebra</jats:italic> 59 (2011), 279–289).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present necessary and sufficient conditions under which the sum of two group invertible elements in a ring is group invertible. As applications, we establish the existence of group inverses of certain 2 × 2 {2\times 2} block-operator matrices over a Banach space. These generalize the known results, e.g., Zhou, Chen and Zhu (Comm. Algebra 48 (2020), 676–690) and Benítez, Liu and Zhu (Linear Multilinear Algebra 59 (2011), 279–289).
分享
查看原文
环中和的群可逆性及其应用
我们提出了环中两个群可逆元素之和是群可逆的必要条件和充分条件。作为应用,我们建立了巴拿赫空间上某些 2 × 2 {2\times 2} 块操作矩阵的群逆存在性。这些结果概括了已知结果,如 Zhou, Chen and Zhu (Comm.代数 48 (2020), 676-690) 和 Benítez、Liu 和 Zhu (Linear Multilinear Algebra 59 (2011), 279-289).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信