{"title":"Long and Short Time Behavior of Non-local in Time Subdiffusion Equations","authors":"Juan C. Pozo, Vicente Vergara","doi":"10.1007/s00245-024-10116-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to studying the long and short time behavior of the solutions to a class of non-local in time subdiffusion equations. To this end, we find sharp estimates of the fundamental solutions in Lebesgue spaces using tools of the theory of Volterra equations. Our results include, as particular cases, the so-called time-fractional and the ultraslow reaction-diffusion equations, which have seen much interest during the last years, mostly due to their applications in the modeling of anomalous diffusion processes.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10116-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to studying the long and short time behavior of the solutions to a class of non-local in time subdiffusion equations. To this end, we find sharp estimates of the fundamental solutions in Lebesgue spaces using tools of the theory of Volterra equations. Our results include, as particular cases, the so-called time-fractional and the ultraslow reaction-diffusion equations, which have seen much interest during the last years, mostly due to their applications in the modeling of anomalous diffusion processes.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.