SKdV, SmKdV flows and their supersymmetric gauge-Miura transformations

Y. F. Adans, A. R. Aguirre, J. F. Gomes, G. V. Lobo, A. H. Zimerman
{"title":"SKdV, SmKdV flows and their supersymmetric gauge-Miura transformations","authors":"Y. F. Adans, A. R. Aguirre, J. F. Gomes, G. V. Lobo, A. H. Zimerman","doi":"arxiv-2403.16285","DOIUrl":null,"url":null,"abstract":"The construction of Integrable Hierarchies in terms of zero curvature\nrepresentation provides a systematic construction for a series of integrable\nnon-linear evolution equations (flows) which shares a common affine Lie\nalgebraic structure. The integrable hierarchies are then classified in terms of\na decomposition of the underlying affine Lie algebra $\\hat \\lie $ into graded\nsubspaces defined by a grading operator $Q$. In this paper we shall discuss\nexplicitly the simplest case of the affine $\\hat {sl}(2)$ Kac-Moody algebra\nwithin the principal gradation given rise to the KdV and mKdV hierarchies and\nextend to supersymmetric models. It is known that the positive mKdV sub-hierachy is associated to some\npositive odd graded abelian subalgebra with elements denoted by $E^{(2n+1)}$.\nEach of these elements in turn, defines a time evolution equation according to\ntime $t=t_{2n+1}$. An interesting observation is that for negative grades, the\nzero curvature representation allows both, even or odd sub-hierarchies. In both\ncases, the flows are non-local leading to integro-differential equations.\nWhilst positive and negative odd sub-hierarchies admit zero vacuum solutions,\nthe negative even admits strictly non-zero vacuum solutions. Soliton solutions\ncan be constructed by gauge transforming the zero curvature from the vacuum\ninto a non trivial configuration (dressing method). Inspired by the dressing transformation method, we have constructed a\ngauge-Miura transformation mapping mKdV into KdV flows. Interesting new results concerns the negative\ngrade sector of the mKdV hierarchy in which a double degeneracy of flows (odd\nand its consecutive even) of mKdV are mapped into a single odd KdV flow. These\nresults are extended to supersymmetric hierarchies based upon the affine $\\hat\n{sl}(2,1)$ super-algebra.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"273 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of Integrable Hierarchies in terms of zero curvature representation provides a systematic construction for a series of integrable non-linear evolution equations (flows) which shares a common affine Lie algebraic structure. The integrable hierarchies are then classified in terms of a decomposition of the underlying affine Lie algebra $\hat \lie $ into graded subspaces defined by a grading operator $Q$. In this paper we shall discuss explicitly the simplest case of the affine $\hat {sl}(2)$ Kac-Moody algebra within the principal gradation given rise to the KdV and mKdV hierarchies and extend to supersymmetric models. It is known that the positive mKdV sub-hierachy is associated to some positive odd graded abelian subalgebra with elements denoted by $E^{(2n+1)}$. Each of these elements in turn, defines a time evolution equation according to time $t=t_{2n+1}$. An interesting observation is that for negative grades, the zero curvature representation allows both, even or odd sub-hierarchies. In both cases, the flows are non-local leading to integro-differential equations. Whilst positive and negative odd sub-hierarchies admit zero vacuum solutions, the negative even admits strictly non-zero vacuum solutions. Soliton solutions can be constructed by gauge transforming the zero curvature from the vacuum into a non trivial configuration (dressing method). Inspired by the dressing transformation method, we have constructed a gauge-Miura transformation mapping mKdV into KdV flows. Interesting new results concerns the negative grade sector of the mKdV hierarchy in which a double degeneracy of flows (odd and its consecutive even) of mKdV are mapped into a single odd KdV flow. These results are extended to supersymmetric hierarchies based upon the affine $\hat {sl}(2,1)$ super-algebra.
SKdV、SmKdV 流及其超对称规-米乌拉变换
零曲率表示法的可积分层次结构为一系列具有共同仿射李代数结构的可积分线性演化方程(流)提供了一个系统的结构。然后,根据将底层仿射李代数$\hat \lie $分解为由分级算子$Q$定义的分级子空间,对可积分层次进行分类。在本文中,我们将明确讨论仿射$\hat {sl}(2)$ Kac-Moody algebrawithin the principal gradation的最简单情况,由此产生KdV和mKdV层次,并扩展到超对称模型。众所周知,正 mKdV 子等级与一些正奇数等级阿贝尔子代数相关联,其元素用 $E^{(2n+1)}$ 表示。一个有趣的现象是,对于负等级,零曲率表示允许偶数或奇数子等级。在这两种情况下,流动都是非局部的,从而导致积分微分方程。虽然正奇数子层次和负奇数子层次允许零真空解,但负偶数子层次允许严格的非零真空解。孤子解可以通过对真空零曲率进行量规转换(换装法)来构建。受修整变换方法的启发,我们构建了将 mKdV 映射到 KdV 流的量规-米乌拉变换。有趣的新结果涉及 mKdV 层次的负级扇形,其中 mKdV 的双重退化流(奇数流及其连续的偶数流)被映射成单一的奇数 KdV 流。这些结果被扩展到基于仿射$\hat{sl}(2,1)$超代数的超对称层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信