Steven Landgraf, Kira Wursthorn, Markus Hillemann, Markus Ulrich
{"title":"DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation","authors":"Steven Landgraf, Kira Wursthorn, Markus Hillemann, Markus Ulrich","doi":"10.1007/s41064-024-00280-4","DOIUrl":null,"url":null,"abstract":"<p>The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation for semantic segmentation, which we call <b>D</b>eep <b>U</b>ncertainty <b>D</b>istillation using <b>E</b>nsembles for <b>S</b>egmentation (DUDES). DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012 dataset. With DUDES, we manage to simultaneously simplify and outperform previous work on Deep-Ensemble-based Uncertainty Distillation.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"273 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s41064-024-00280-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation for semantic segmentation, which we call Deep Uncertainty Distillation using Ensembles for Segmentation (DUDES). DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012 dataset. With DUDES, we manage to simultaneously simplify and outperform previous work on Deep-Ensemble-based Uncertainty Distillation.
期刊介绍:
PFG is an international scholarly journal covering the progress and application of photogrammetric methods, remote sensing technology and the interconnected field of geoinformation science. It places special editorial emphasis on the communication of new methodologies in data acquisition and new approaches to optimized processing and interpretation of all types of data which were acquired by photogrammetric methods, remote sensing, image processing and the computer-aided interpretation of such data in general. The journal hence addresses both researchers and students of these disciplines at academic institutions and universities as well as the downstream users in both the private sector and public administration.
Founded in 1926 under the former name Bildmessung und Luftbildwesen, PFG is worldwide the oldest journal on photogrammetry. It is the official journal of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).