Deep Learning Based Measure of Name Concentration Risk

Eva Lütkebohmert, Julian Sester
{"title":"Deep Learning Based Measure of Name Concentration Risk","authors":"Eva Lütkebohmert, Julian Sester","doi":"arxiv-2403.16525","DOIUrl":null,"url":null,"abstract":"We propose a new deep learning approach for the quantification of name\nconcentration risk in loan portfolios. Our approach is tailored for small\nportfolios and allows for both an actuarial as well as a mark-to-market\ndefinition of loss. The training of our neural network relies on Monte Carlo\nsimulations with importance sampling which we explicitly formulate for the\nCreditRisk${+}$ and the ratings-based CreditMetrics model. Numerical results\nbased on simulated as well as real data demonstrate the accuracy of our new\napproach and its superior performance compared to existing analytical methods\nfor assessing name concentration risk in small and concentrated portfolios.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new deep learning approach for the quantification of name concentration risk in loan portfolios. Our approach is tailored for small portfolios and allows for both an actuarial as well as a mark-to-market definition of loss. The training of our neural network relies on Monte Carlo simulations with importance sampling which we explicitly formulate for the CreditRisk${+}$ and the ratings-based CreditMetrics model. Numerical results based on simulated as well as real data demonstrate the accuracy of our new approach and its superior performance compared to existing analytical methods for assessing name concentration risk in small and concentrated portfolios.
基于深度学习的名称集中风险衡量标准
我们提出了一种新的深度学习方法,用于量化贷款组合中的姓名集中风险。我们的方法专为小型投资组合量身定做,允许对损失进行精算和按市价计价两种定义。神经网络的训练依赖于重要度抽样的蒙特卡洛模拟,我们明确地为信用风险${+}$和基于评级的信用计量模型制定了重要度抽样。基于模拟数据和真实数据的数值结果表明,与现有的分析方法相比,我们的新方法在评估小额和集中投资组合的名称集中风险方面具有更高的准确性和更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信