{"title":"ERABQS: entity resolution based on active machine learning and balancing query strategy","authors":"Jabrane Mourad, Tabbaa Hiba, Rochd Yassir, Hafidi Imad","doi":"10.1007/s10844-024-00853-0","DOIUrl":null,"url":null,"abstract":"<p>Entity Resolution (ER) is a crucial process in the field of data management and integration. The primary goal of ER is to identify different profiles (or records) that refer to the same real-world entity across databases. The challenging problem is that labeling a large sample of profiles can be very expensive and time-consuming. Active Machine Learning (ActiveML) addresses this issue by selecting the most representative or informative profiles pairs to be labeled. The informativeness is determined by the capacity to diminish the uncertainty of the model. Conversely, representativeness evaluates whether a selected instance effectively reflects the overall input patterns of unlabeled data. Traditional ActiveML techniques typically rely on one strategy, Which may severely restrict the performance of the ActiveML process and lead to slow convergence. Especially in ER problems with a lack of initial training data. In this paper, we overcame this issue by inventing an approach for balancing the two above strategies. The implemented solution named EBEES (Epsilon-based Balancing Exploration and Exploitation Strategy), Which contains two variations: Adaptive-<span>\\(\\epsilon \\)</span> and <span>\\(\\epsilon \\)</span>-decreasing. We evaluated the EBEES on twelve datasets. Comparing the EBEES strategy against the state-of-the-art methods, without an initial training data, showed an enhanced performance in terms of F1-score, model stability, and rapid convergence.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"63 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00853-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Entity Resolution (ER) is a crucial process in the field of data management and integration. The primary goal of ER is to identify different profiles (or records) that refer to the same real-world entity across databases. The challenging problem is that labeling a large sample of profiles can be very expensive and time-consuming. Active Machine Learning (ActiveML) addresses this issue by selecting the most representative or informative profiles pairs to be labeled. The informativeness is determined by the capacity to diminish the uncertainty of the model. Conversely, representativeness evaluates whether a selected instance effectively reflects the overall input patterns of unlabeled data. Traditional ActiveML techniques typically rely on one strategy, Which may severely restrict the performance of the ActiveML process and lead to slow convergence. Especially in ER problems with a lack of initial training data. In this paper, we overcame this issue by inventing an approach for balancing the two above strategies. The implemented solution named EBEES (Epsilon-based Balancing Exploration and Exploitation Strategy), Which contains two variations: Adaptive-\(\epsilon \) and \(\epsilon \)-decreasing. We evaluated the EBEES on twelve datasets. Comparing the EBEES strategy against the state-of-the-art methods, without an initial training data, showed an enhanced performance in terms of F1-score, model stability, and rapid convergence.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.