{"title":"On the number of terms in the COS method for European option pricing","authors":"Gero Junike","doi":"10.1007/s00211-024-01402-1","DOIUrl":null,"url":null,"abstract":"<p>The Fourier-cosine expansion (COS) method is used to price European options numerically in a very efficient way. To apply the COS method, one has to specify two parameters: a truncation range for the density of the log-returns and a number of terms <i>N</i> to approximate the truncated density by a cosine series. How to choose the truncation range is already known. Here, we are able to find an explicit and useful bound for <i>N</i> as well for pricing and for the sensitivities, i.e., the Greeks Delta and Gamma, provided the density of the log-returns is smooth. We further show that the COS method has an exponential order of convergence when the density is smooth and decays exponentially. However, when the density is smooth and has heavy tails, as in the Finite Moment Log Stable model, the COS method does not have exponential order of convergence. Numerical experiments confirm the theoretical results.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"273 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01402-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Fourier-cosine expansion (COS) method is used to price European options numerically in a very efficient way. To apply the COS method, one has to specify two parameters: a truncation range for the density of the log-returns and a number of terms N to approximate the truncated density by a cosine series. How to choose the truncation range is already known. Here, we are able to find an explicit and useful bound for N as well for pricing and for the sensitivities, i.e., the Greeks Delta and Gamma, provided the density of the log-returns is smooth. We further show that the COS method has an exponential order of convergence when the density is smooth and decays exponentially. However, when the density is smooth and has heavy tails, as in the Finite Moment Log Stable model, the COS method does not have exponential order of convergence. Numerical experiments confirm the theoretical results.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing