Two Algorithms for Computing Rational Univariate Representations of Zero-Dimensional Ideals with Parameters

Dingkang Wang, Jingjing Wei, Fanghui Xiao, Xiaopeng Zheng
{"title":"Two Algorithms for Computing Rational Univariate Representations of Zero-Dimensional Ideals with Parameters","authors":"Dingkang Wang, Jingjing Wei, Fanghui Xiao, Xiaopeng Zheng","doi":"arxiv-2403.16519","DOIUrl":null,"url":null,"abstract":"Two algorithms for computing the rational univariate representation of\nzero-dimensional ideals with parameters are presented in the paper. Different\nfrom the rational univariate representation of zero-dimensional ideals without\nparameters, the number of zeros of zero-dimensional ideals with parameters\nunder various specializations is different, which leads to choosing and\nchecking the separating element, the key to computing the rational univariate\nrepresentation, is difficult. In order to pick out the separating element, by\npartitioning the parameter space we can ensure that under each branch the ideal\nhas the same number of zeros. Subsequently with the help of the extended\nsubresultant theorem for parametric cases, two ideas are given to conduct the\nfurther partition of parameter space for choosing and checking the separating\nelement. Based on these, we give two algorithms for computing rational\nunivariate representations of zero-dimensional ideals with parameters.\nFurthermore, the two algorithms have been implemented on the computer algebra\nsystem Singular. Experimental data show that the second algorithm has the\nbetter performance in contrast to the first one.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two algorithms for computing the rational univariate representation of zero-dimensional ideals with parameters are presented in the paper. Different from the rational univariate representation of zero-dimensional ideals without parameters, the number of zeros of zero-dimensional ideals with parameters under various specializations is different, which leads to choosing and checking the separating element, the key to computing the rational univariate representation, is difficult. In order to pick out the separating element, by partitioning the parameter space we can ensure that under each branch the ideal has the same number of zeros. Subsequently with the help of the extended subresultant theorem for parametric cases, two ideas are given to conduct the further partition of parameter space for choosing and checking the separating element. Based on these, we give two algorithms for computing rational univariate representations of zero-dimensional ideals with parameters. Furthermore, the two algorithms have been implemented on the computer algebra system Singular. Experimental data show that the second algorithm has the better performance in contrast to the first one.
计算有参数零维理想的有理单变量表示的两种算法
本文提出了计算带参数零维理想的有理单变量表示的两种算法。与无参数零维理想的有理单变量表示不同,有参数零维理想在各种特殊化下的零点个数是不同的,这导致计算有理单变量表示的关键--分离元的选择和检验是困难的。为了选出分离元素,我们可以通过划分参数空间来确保每个分支下的理想具有相同的零点数。随后,借助参数情况下的扩展子结果定理,给出了进一步划分参数空间以选择和检验分离元素的两种思路。在此基础上,我们给出了计算带参数零维理想的有理无变量表示的两种算法。此外,这两种算法已在计算机代数系统 Singular 上实现。实验数据表明,第二种算法的性能优于第一种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信